[1] JASINSKA M. Test reactions to study efficency of mixing[J]. Chem. Eng. Process, 2015, 36(2):171-208.
[2] FOURNIER M C, FALK L, VILLERMAUX J. A new parallel competing reaction system for assessing micromixing efficiency-Experimental approach[J]. Chem. Eng. Sci., 1996, 51(22):5053-5064.
[3] BOURNE J R. Mixing and the selectivity of chemical reactions[J]. Org. Process. Res. Dev., 2003, 7(4):471-508.
[4] BOURNE J R, KOZICKI F, RYS P. Mixing and fast chemical reaction. Ⅰ. Test reactions to determine segregation[J]. Chem. Eng. Sci., 1981, 36(10):1643-1648.
[5] BOURNE J R, KUT O M, LENZNER J. An improved reaction system of investigate micromixing in high-intensity mixers[J]. Ind. Eng. Chem. Res., 1992, 31(3):949-958.
[6] GUICHARDON P, FALK L. Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I:Experimental procedure[J]. Chem. Eng. Sci., 2000, 55(19):4233-4243.
[7] GUICHARDON P, FALK L, ANDRIEU M. Experimental comparison of the iodide-iodate and the diazo coupling micromixing test reactions in stirred reactors[J]. Chem. Eng. Res. Des., 2001, 79(A8):906-914.
[8] NOURI L, LEGRAND J, BENMALEK N, et al. Characterisation and comparison of the micromixing efficiency in torus and batch stirred reactors[J]. Chem. Eng. J., 2008, 142(1):78-86.
[9] MACHADO M B, NUNHEZ J R, NOBES D, et al. Impeller characterization and selection:balancing efficient hydrodynamics with process mixing requirements[J]. AIChE J., 2012, 58(8):2573-2588.
[10] 王宇良. LDPE釜式反应器混合特性研究[D]. 杭州:浙江大学, 2014.
[11] LIU B Q, WANG M M, LIU J L, et al. Experimental study on micromixing characteristics of novel large-double-blade impeller[J]. Chem. Eng. Sci., 2015, 123:641-647.
[12] YANG K, CHU G W, SHAO L, et al. Micromixing efficiency of rotating packed bed with premixed liquid distributor[J]. Chem. Eng. J., 2009, 153(1/2/3):222-226.
[13] CHU G W, SONG Y H, YANG H J, et al. Micromixing efficiency of a novel rotor-stator reactor[J]. Chem. Eng. J., 2007, 128(2/3):191-196.
[14] JACOBSEN N C, HINRICHSEN O. Micromixing efficiency of a spinning disk reactor[J]. Ind. Eng. Chem. Res., 2012, 51(36):11643-11652.
[15] RECKAMP J M, BINDELS A, DUFFIELD S, et al. Mixing performance evaluation for commercially available micromixers using Villermaux-Dushman reaction scheme with the interaction by exchange with the mean model[J]. Org. Process. Res. Dev., 2017, 21(6):816-820.
[16] KOLBL A, KRAUT M, SCHUBERT K. The iodide iodate method to characterize microstructured mixing devices[J]. AIChE J., 2008, 54(3):639-645.
[17] JOHNSON B K, PRUD'HOMME R K. Chemical processing and micromixing in confined impinging jets[J]. AIChE J., 2003, 49(9):2264-2282.
[18] BOURNE J R, GHOLAP R V. An approximate method for predicting the product distribution of fast reactions in stirred-tank reactors[J]. Biochem. Eng. J., 1995, 59(3):293-296.
[19] SULTAN M A, KRUPA K, FONTE C P, et al. High-throughput T-Jets mixers:an innovative scale-up concept[J]. Chem. Eng. Technol., 2013, 36(2):323-331.
[20] BALDYGA J, BOURNE J R, ZIMMERMANN B. Investigation of mixing in jet reactors using fast, competitive-consecutive reactions[J]. Chem. Eng. Sci., 1994, 49(12):1937-1946.
[21] PANIC S, LOEBBECKE S, TUERCKE T, et al. Experimental approaches to a better understanding of mixing performance of microfluidic devices[J]. Chem. Eng. J., 2004, 101(1/2/3):409-419.
[22] KASHID M, RENKEN A, KIWI-MINSKER L. Mixing efficiency and energy consumption for five generic microchannel designs[J]. Chem. Eng. J., 2011, 167(2/3):436-443.
[23] BOROUN S, LARACHI F. Enhancing liquid micromixing using low-frequency rotating nanoparticles[J]. AIChE Journal, 2017, 63(1):337-346.
[24] BALDYGA J, BOURNE J. Simplification of micromixing calculations. Ⅱ. New applications[J]. Chem. Eng. J., 1989, 42(2):93-101.
[25] FOURNIER M C, FALK L, VILLERMAUX J. A new parallel competing reaction system for assessing micromixing efficiency-Determination of micromixing time by a simple mixing model[J]. Chem. Eng. Sci., 1996, 51(23):5187-5192.
[26] BALDYGA J, BOURNE J. Simplification of micromixing calculations. Ⅰ. Derivation and application of new model[J]. Chem. Eng. J., 1989, 42(2):83-92.
[27] KRUPA K, SULTAN M A, FONTE C P, et al. Characterization of mixing in T-jets mixers[J]. Chem. Eng. J., 2012, 207/208(8):931-937.
[28] NUNES M I, SANTOS R J, DIAS M M, et al. Micromixing assessment of confined impinging jet mixers used in RIM[J]. Chem. Eng. Sci., 2012, 74(22):276-286.
[29] CRIMALDI J P. Planar laser induced fluorescence in aqueous flows[J]. Exp. Fluids., 2008, 44(6):851-863.
[30] 骆培成, 赵素青, 项国兆, 等. 激光诱导荧光技术及其在液体混合与混合反应流中的应用研究进展[J]. 化工进展, 2012, 31(4):742-748.
[31] 王文坦, 张梦雪, 赵述芳, 等. 激光诱导荧光技术在液体混合可视化研究中的应用[J]. 化工学报, 2013, 64(3):771-778.
[32] 骆培成, 程易, 汪展文, 等. 面激光诱导荧光技术用于快速液液微观混合研究[J]. 化工学报, 2005, 56(12):2288-2293.
[33] LUO P C, CHEN Y, ZHAO Y Z, et al. Millisecond mixing of two liquid streams in a mixer model[J]. Chem. Eng. Sci., 2007, 62(18):5688-5695.
[34] MASSING J, KADEN D, KAHLER C J, et al. Luminescent two-color tracer particles for simultaneous velocity and temperature measurements in microfluidics[J]. Meas. Sci. Technol., 2016, 27(11):115301.
[35] LIU Z, CHENG Y, JIN Y. Experimental study of reactive mixing in a mini-scale mixer by laser-induced fluorescence technique[J]. Chem. Eng. J., 2009, 150(2/3):536-543.
[36] ZUGHBI H D, RAKIB M A. Mixing in a fluid jet agitated tank:effects of jet angle and elevation and number of jets[J]. Chem. Eng. Sci., 2004, 59(4):829-842.
[37] YADAV R L, PATWARDHAN A W. Design aspects of ejectors:effects of suction chamber geometry[J]. Chem. Eng. Sci., 2008, 63(15):3886-3897.
[38] HASSEL E, JAHNKE S, KORNEV N, et al. Large-eddy simulation and laser diagnostic measurements of mixing in a coaxial jet mixer[J]. Chem. Eng. Sci., 2006, 61(9):2908-2912.
[39] OTTINO J, RANZ W E, MACOSKO C W. A lamellar model for analysis of liquid-liquid mixing[J]. Chem. Eng. Sci., 1979, 34(6):877-890.
[40] 李希,陈建峰,陈甘棠. 湍流场中物质微元的形态特征及相应的模型[J]. 力学学报, 1994, 26(3):266-274.
[41] BAKKER R A, VAN DEN AKKER H E. A cylindrical stretching vortex model of micromixing in chemical reactors[C]//Eighth European Conference on mixing, Cambridge:Hemsphere Publishing Corporation, 1994:136.
[42] SCHWARZER H C, SCHWERTFIRM F, MANHART M, et al. Predictive simulation of nanoparticle precipitation based on the population balance equation[J]. Chem. Eng. Sci., 2006, 61(1):167-181.
[43] METZGER L, KIND M. On the mixing in confined impinging jet mixers - Time scale analysis and scale-up using CFD coarse-graining methods[J]. Chem. Eng. Res. Des., 2016, 109:464-476.
[44] FOX R O, VARMA A. Computational models for turbulent reacting flows[M]. Cambridge:Cambridge Univ. Press, 2003.
[45] POPE S B. PDF methods for turbulent reactive flows[J]. Prog. Energ. Combust., 1985, 11(2):119-192.
[46] MOBUS H, GERLINGER P, BRGGEMANN D. Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames[J]. Combust. Flame, 2001, 124(3):519-534.
[47] GAVI E, MARCHISIO D L, BARRESI A A. CFD modelling and scale-up of confined impinging jet reactors[J]. Chem. Eng. Sci., 2007, 62(8):2228-2241.
[48] 毕荣山, 谭心舜, 林柯利, 等. 结构尺寸对液-液喷射器湍流混合性能的影响[J]. 高校化学工程学报, 2010, 24(5):752-757.
[49] LEMENAND T, DELLA VALLE D, HABCHI C, et al. Micro-mixing measurement by chemical probe in homogeneous and isotropic turbulence[J]. Chem. Eng. J., 2017, 314:453-465.
[50] BUMRUNGTHAICHAICHAN E. A review on numerical consideration for computational fluid dynamics modeling of jet mixing tanks[J]. Korean J. Chem. Eng., 2016, 33(11):3050-3068.
[51] LACASSAGNE T, SIMOENS S, EL HAJEM M, et al. Ratiometric, single-dye, pH-sensitive inhibited laser-induced fluorescence for the characterization of mixing and mass transfer[J]. Exp. Fluids., 2018, 59(1):1-17.
[52] HE C X, LIU Y Z. Proper orthogonal decomposition of time-resolved LIF visualization:scalar mixing in a round jet[J]. J. Visual., 2017, 20(4):789-815.
[53] BALDYGA J, BOURNE J R, GHOLAP R V. The influence of viscosity on mixing in jet reactors[J]. Chem. Eng. Sci., 1995, 50(12):1877-1880.
[54] BALDYGA J, BOURNE J, DUBUIS B, et al. Jet reactor scale-up for mixing-controlled reactions[J]. Chem. Eng. Res. Des., 1995, 73(5):497-502.
[55] SCHAER E, GUICHARDON P, FALK L, et al. Determination of local energy dissipation rates in impinging jets by a chemical reaction method[J]. Chem. Eng. J., 1999, 72(2):125-138.
[56] BALDYGA J, HENCZKA M. Turbulent mixing and parallel chemical reactions in a pipe - application of a closure model[M]. Recents Progres en Genie des Procedes Paris, France. 1997:341-348.
[57] HEINZ S, ROEKAERTS D. Reynolds number effects on mixing and reaction in a turbulent pipe flow[J]. Chem. Eng. Sci., 2001, 56(10):3197-3210.
[58] ZHDANOV V, CHORNY A. Development of macro- and micromixing in confined flows of reactive fluids[J]. Int. J. Heat. Mass. Tran., 2011, 54(15/16):3245-3255.
[59] ZHDANOV V, HASSEL E. Mixing enhancement in a coaxial jet mixer[J]. Adv. Mater. Phys. Chem., 2013, 2(4):134-137.
[60] LIM T, NEW T, LUO S. On the development of large-scale structures of a jet normal to a cross flow[J]. Phys. Fluids, 2001, 13(3):770-775.
[61] NEW T, LIM T, LUO S. Elliptic jets in cross-flow[J]. J. Fluid. Mech., 2003, 494:119-140.
[62] WEN X, LIU Y Z, TANG H. Near-field interaction of an inclined jet with a crossflow:LIF visualization and TR-PIV measurement[J]. J. Visual., 2018, 21(1):19-38.
[63] BERTRAND M, LAMARQUE N, LEBAIGUE O, et al. Micromixing characterisation in rapid mixing devices by chemical methods and LES modelling[J]. Chem. Eng. J., 2016, 283:462-475.
[64] SHI Y X, FOX R O, OLSEN M G. Micromixing visualization and quantification in a microscale multi-inlet vortex nanoprecipitation reactor using confocal-based reactive micro laser-induced fluorescence[J]. Biomicrofluidics, 2014, 8(4):044102.
[65] PARVIZIAN F, RAHIMI M, AZIMI N. Macro- and micromixing studies on a high frequency continuous tubular sonoreactor[J]. Chem. Eng. Process., 2012, 57/58:8-15.
[66] PARVIZIAN F, RAHIMI M, AZIMI N, et al. CFD modeling of micromixing and velocity distribution in a 1.7-MHz tubular sonoreactor[J]. Chem. Eng. Technol., 2014, 37(1):113-122.
[67] RAHIMI M, AZIMI N, PARSAMOGADAM M A, et al. Mixing performance of T, Y, and oriented Y-micromixers with spatially arranged outlet channel:evaluation with Villermaux/Dushman test reaction[J]. Microsyst. Technol., 2017, 23(8):3117-3130.
[68] LIU Z W, GUO L, HUANG T H, et al. Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions[J]. Chem. Eng. Sci., 2014, 119(6):124-133.
[69] KRUPA K, NUNES M I, SANTOS R J, et al. Characterization of micromixing in T-jet mixers[J]. Chem. Eng. Sci., 2014, 111(8):48-55.
[70] FALK L, COMMENGE J M. Performance comparison of micromixers[J]. Chem. Eng. Sci., 2010, 65(1):405-411.
[71] METZGER L, KIND M. On the transient flow characteristics in confined impinging jet mixers-CFD simulation and experimental validation[J]. Chem. Eng. Sci., 2015, 133:91-105.
[72] 林柯利, 毕荣山, 谭心舜, 等. 利用面激光诱导荧光技术研究喷射器内液-液湍流混合特性[J]. 高校化学工程学报, 2009, 23(1):28-33.
[73] 张丽君, 李玉刚, 毕荣山, 等. 喷射反应器内液-液湍流微观混合的研究[J]. 计算机与应用化学, 2012, 29(3):323-326.
[74] LUO J Z, LUO Y, CHU G W, et al. Micromixing efficiency of a novel helical tube reactor:CFD prediction and experimental characterization[J]. Chem. Eng. Sci., 2016, 155:386-396. |