Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5468-5479.DOI: 10.16085/j.issn.1000-6613.2020-2216
• Chemical processes and equipment • Previous Articles Next Articles
TANG Qi1(), BAO Di2, SHAO Shaoxiong1, XU Ping1, LIU Lianwei1, ZHENG Weiming1()
Received:
2020-11-05
Revised:
2021-01-06
Online:
2021-10-25
Published:
2021-10-10
Contact:
ZHENG Weiming
汤祺1(), 鲍迪2, 邵少雄1, 徐平1, 刘联伟1, 郑维明1()
通讯作者:
郑维明
作者简介:
汤祺(1991—),男,助理研究员,硕士,研究方向为流体力学。E-mail:CLC Number:
TANG Qi, BAO Di, SHAO Shaoxiong, XU Ping, LIU Lianwei, ZHENG Weiming. Three-phase fluid dynamics simulation of ionic liquid system in mixer-settler[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5468-5479.
汤祺, 鲍迪, 邵少雄, 徐平, 刘联伟, 郑维明. 混合澄清槽内离子液体体系的三相流体动力学模拟[J]. 化工进展, 2021, 40(10): 5468-5479.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2216
名称 | 密度/kg·m-3 | 黏度/mPa·s | 相 |
---|---|---|---|
去离子水 | 998.300 | 1.003 | 主相 |
离子液体[C4mim][NTf2] (纯度99%) | 1440.288 | 62.674 | 第二相 |
空气 | 1.225 | 0.018 | 第三相 |
(T=293K,p=101.325kPa)
名称 | 密度/kg·m-3 | 黏度/mPa·s | 相 |
---|---|---|---|
去离子水 | 998.300 | 1.003 | 主相 |
离子液体[C4mim][NTf2] (纯度99%) | 1440.288 | 62.674 | 第二相 |
空气 | 1.225 | 0.018 | 第三相 |
方程名称 | 方程式 | 序号 |
---|---|---|
连续性方程 | (1) | |
动量方程 | (2) | |
RNG k-ε湍流模型 | (3) | |
(4) | ||
曳力系数模型 | ||
(5) | ||
液滴的Sauter平均直径模型[ | (6) | |
(7) | ||
N-phase 体积分数方程 | (8) | |
水力直径 | 圆形:DH=Di | (9) |
长方形:DH=2HW/(H+W) | (10) | |
湍流强度 | (11) |
方程名称 | 方程式 | 序号 |
---|---|---|
连续性方程 | (1) | |
动量方程 | (2) | |
RNG k-ε湍流模型 | (3) | |
(4) | ||
曳力系数模型 | ||
(5) | ||
液滴的Sauter平均直径模型[ | (6) | |
(7) | ||
N-phase 体积分数方程 | (8) | |
水力直径 | 圆形:DH=Di | (9) |
长方形:DH=2HW/(H+W) | (10) | |
湍流强度 | (11) |
水相入口流量/mL·min-1 | 有机相入口流量/mL·min-1 | 流比(a∶o) |
---|---|---|
25 | 25 | 1∶1 |
25 | 20 | 5∶4 |
25 | 15 | 5∶3 |
25 | 10 | 5∶2 |
水相入口流量/mL·min-1 | 有机相入口流量/mL·min-1 | 流比(a∶o) |
---|---|---|
25 | 25 | 1∶1 |
25 | 20 | 5∶4 |
25 | 15 | 5∶3 |
25 | 10 | 5∶2 |
流比 | 水相体积/m3 | 有机相体积/m3 | 两相相比 |
---|---|---|---|
1∶1 | 5.52×10-5 | 4.47×10-5 | 1.23 |
5∶4 | 5.57×10-5 | 4.42×10-5 | 1.26 |
5∶3 | 5.60×10-5 | 4.39×10-5 | 1.28 |
5∶2 | 5.72×10-5 | 4.32×10-5 | 1.33 |
流比 | 水相体积/m3 | 有机相体积/m3 | 两相相比 |
---|---|---|---|
1∶1 | 5.52×10-5 | 4.47×10-5 | 1.23 |
5∶4 | 5.57×10-5 | 4.42×10-5 | 1.26 |
5∶3 | 5.60×10-5 | 4.39×10-5 | 1.28 |
5∶2 | 5.72×10-5 | 4.32×10-5 | 1.33 |
温度/K | 离子液体密度/kg·m-3 | 黏度/mPa·s |
---|---|---|
293 | 1440.288 | 62.674 |
298 | 1435.433 | 50.069 |
303 | 1430.595 | 41.178 |
308 | 1425.688 | 34.779 |
温度/K | 离子液体密度/kg·m-3 | 黏度/mPa·s |
---|---|---|
293 | 1440.288 | 62.674 |
298 | 1435.433 | 50.069 |
303 | 1430.595 | 41.178 |
308 | 1425.688 | 34.779 |
温度/K | 水相体积/m3 | 有机相体积/m3 | 两相相比 |
---|---|---|---|
293 | 5.52×10-5 | 4.47×10-5 | 1.23 |
298 | 5.53×10-5 | 4.47×10-5 | 1.24 |
303 | 5.56×10-5 | 4.45×10-5 | 1.25 |
308 | 5.58×10-5 | 4.44×10-5 | 1.26 |
温度/K | 水相体积/m3 | 有机相体积/m3 | 两相相比 |
---|---|---|---|
293 | 5.52×10-5 | 4.47×10-5 | 1.23 |
298 | 5.53×10-5 | 4.47×10-5 | 1.24 |
303 | 5.56×10-5 | 4.45×10-5 | 1.25 |
308 | 5.58×10-5 | 4.44×10-5 | 1.26 |
1 | ZHANG X, ZHANG X, DONG H, et al. Carbon capture with ionic liquids: overview and progress[J]. Energy & Environmental Science, 2012, 5(5): 6668. |
2 | DAI S, JU Y H, BARNES C E. Solvent extraction of strontium nitrate by a crown ether using room-temperature ionic liquids[J]. Journal of the Chemical Society Dalton Transactions, 1999(8): 1201-1202. |
3 | VISSER A E, SWATLOSKI R P, REICHERT W M, et al. Traditional extractants in nontraditional solvents: groups 1 and 2 extraction by crown ethers in room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2000, 39(10): 3596-3604. |
4 | DIETZ M L, DZIELAWA J A. Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the ‘greenness’ of ionic liquids as diluents in liquid-liquid extraction[J]. Chemical Communications, 2001, 20: 2124-2125. |
5 | SHI C, JING Y, JIA Y. Tri-n-butyl phosphate-ionic liquid mixtures for Li+ extraction from Mg2+-containing brines at 303—343K[J]. Russian Journal of Physical Chemistry A, 2017, 91(4): 692-696. |
6 | DIETZ M, DZIELAWA J, LASZAK I, et al. Influence of solvent structural variations on the mechanism of facilitated ion transfer into room-temperature ionic liquids[J]. Green Chemistry, 2003, 5(6): 682-685. |
7 | GIRIDHAR P, VENKATESAN K A, SRINIVASAN T G, et al. Extraction of uranium(Ⅵ) from nitric acid medium by 1.1M tri-n-butylphosphate in ionic liquid diluent[J]. Journal of Radioanalytical and Nuclear Chemistry, 2005, 265(1): 31-38. |
8 | DIETZ M L, STEPINSKI D C. Anion concentration-dependent partitioning mechanism in the extraction of uranium into room-temperature ionic liquids[J]. Talanta, 2008, 75(2): 598-603. |
9 | 路文娟. 微乳液及离子液体萃取金和汞的研究[D]. 济南: 山东大学, 2013. |
LU Wenjuan. Extraction of gold() and mercury(Ⅱ) by microemulition and ionic liquids[D]. Jinan: Shandong University, 2013. | |
10 | 敖银勇, 周瀚洋, 彭静, 等. 咪唑离子液体体系辐解产物的鉴定及其对萃取的影响[C]//中国核学会2015年学术年会论文集.绵阳, 2015: 16-22. |
AO Yinyong, ZHOU Hanyang, PENG Jing, et al.Identification of radiolytic products of RTILs-based extraction system and their effect on the removal of metal ions[C]//Progress Report on China Nuclear Science & Technology. Mianyang, 2015: 16-22. | |
11 | 束玉珍, 吴继宗, 邓惟勤, 等. 苯并-15-冠-5/离子液体体系液液萃取锂[J]. 核化学与放射化学, 2017, 39(2): 151-157. |
SHU Yuzhen, WU Jizong, DENG Weiqin, et al. Liquid-liquid extraction of lithium by benzo-15-crown-5/ionic liquid system[J]. Journal of Nuclear and Radiochemistry, 2017, 39(2): 151-157. | |
12 | LIU Z, HUANG S, WANG W. A refined force field for molecular simulation of imidazolium-based ionic liquids[J]. The Journal of Physical Chemistry B, 2004, 108(34): 12978-12989. |
13 | HUANG Y, ZHAO Y, ZENG S, et al. Density prediction of mixtures of ionic liquids and molecular solvents using two new generalized models[J]. Industrial & Engineering Chemistry Research, 2014, 53(39): 15270-15277. |
14 | HUANG Y, ZHANG X, ZHAO Y, et al. New models for predicting thermophysical properties of ionic liquid mixtures[J]. Physical Chemistry Chemical Physics, 2015, 17(40): 26918-26929. |
15 | DONG H, WANG X, LIU L, et al. The rise and deformation of a single bubble in ionic liquids[J]. Chemical Engineering Science, 2010, 65(10): 3240-3248. |
16 | 鲍迪, 张香平, 张欣, 等. 非常规介质离子液体中气泡行为研究进展[J]. 工程研究——跨学科视野中的工程, 2015, 7(3): 305-312. |
BAO Di, ZHANG Xiangping, ZHANG Xin, et al. Research progress of bubble behavior in ionic liquid systems[J]. Journal of Engineering Studies, 2015, 7(3): 305-312. | |
17 | 汤祺, 白璐, 董海峰, 等. 离子液体体系流体动力学研究现状及发展趋势[J]. 化工进展, 2018, 37(4): 1323-1334. |
TANG Qi, BAI Lu, DONG Haifeng, et al. Research on status and developing trends of hydrodynamics in ionic-liquid system[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1323-1334. | |
18 | 马婷婷. 混合澄清槽内流动的测量与模拟[D]. 天津: 天津大学, 2014. |
MA Tingting. On measurement and simulation of flow in mixer-settlers[D]. Tianjin: Tianjin University, 2014. | |
19 | 黄毅, 武斌, 陈葵, 等. 新型大三角桨叶混合槽内流场的数值模拟[J]. 湿法冶金, 2016, 35(4): 361-364. |
HUANG Yi, WU Bin, CHEN Kui, et al. Numerical simulation of flow field of a new triangle impeller in mixer-settler[J]. Hydrometallurgy of China, 2016, 35(4): 361-364. | |
20 | 王亮, 聂林. 稀土萃取搅拌槽内两相混合过程的数值计算[J]. 中国有色冶金, 2017, 46(2): 42-44, 76. |
WANG Liang, NIE Lin. Numerical calculation of two-phase mixing process in rare earth extraction agitation tank[J].China Nonferrous Metallurgy, 2017, 46(2): 42-44, 76. | |
21 | 唐巧, 叶思施, 王运东. 放大准则对混合澄清槽混合室中混合时间和流动特性的影响[J]. 化工学报, 2016, 67(2): 448-457. |
TANG Qiao, YE Sishi, WANG Yundong. Mixing time and flow characteristic in square pump-mix mixer under different scale-up criteria[J]. CIESC Journal, 2016, 67(2): 448-457. | |
22 | 吴富姬, 周雄军. 稀土萃取混合澄清槽的放大设计研究[J]. 湿法冶金, 2014, 33(3): 232-235. |
WU Fuji, ZHOU Xiongjun. Research on enlarge design of mixing settler[J]. Hydrometallurgy of China, 2014, 33(3): 232-235. | |
23 | GU D, LIU Z, XU C, et al. PIV measurement and CFD simulation of liquid-liquid mixing in mixer settler with rigid-flexible impeller[J]. International Journal of Chemical Reactor Engineering, 2019, 17(11): 546-557. |
24 | 郑雄攀. 稀土萃取混合澄清槽内搅拌过程强化[D]. 重庆: 重庆大学, 2015. |
ZHENG Xiongpan. Mixing process intensification in a mixer settler for rare earth extraction[D]. Chongqing: Chongqing University, 2015. | |
25 | 许传林. 混合澄清槽内液液两相混沌混合强化规律研究[D]. 重庆: 重庆大学, 2018. |
XU Chuanlin. Study on chaotic mixing intensification of liquid-liquid in mixer settler[D]. Chongqing: Chongqing University, 2018. | |
26 | 倪志南, 武斌, 陈葵, 等. 液-液萃取过程中液滴分散特性的数值模拟[J]. 湿法冶金, 2018, 37(5): 402-406. |
NI Zhinan, WU Bin, CHEN Kui, et al. Numerical simulation of droplet dispersion in liquid-liquid mixing chamber[J]. Hydrometallurgy of China, 2018, 37(5): 402-406. | |
27 | TANG Q, YE S, WANG Y, et al. A study on liquid-liquid dispersions in a continuous mixer via computational fluid dynamics (CFD) simulation combined with population balance model (PBM)[J]. The Canadian Journal of Chemical Engineering, 2019, 97(2): 452-464. |
28 | LUO H, SVENDSEN H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
29 | 刘秀. 箱式混合澄清萃取槽流场数值模拟研究[D]. 赣州:江西理工大学, 2013. |
LIU Xu. Numerical simulation of flow field of box mixer-settlers in extration tank[D]. Ganzhou: Jiangxi University of Science and Technology, 2013. | |
30 | DESNOYER C, MASBERNAT O, GOURDON C. Experimental study of drop size distributions at high phase ratio in liquid-liquid dispersions[J]. Chemical Engineering Science, 2003, 58(7): 1353-1363. |
31 | GARDAS R L, GE R, MANAN N AB, et al. Interfacial tensions of imidazolium-based ionic liquids with water and n-alkanes[J]. Fluid Phase Equilibria, 2010, 294(1/2): 139-147. |
[1] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[2] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[3] | ZHANG Chengsong, ZHANG Jing, GONG Bin, LI Mingyang, YUAN Jiaxin, LI Hongye. Vibration characteristics of self-priming jet flexible impeller [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1728-1738. |
[4] | TIAN Qikai, ZHENG Haiping, ZHANG Shaobin, ZHANG Jing, YU Ziyi. Advances in mixing enhanced microfluidic channels [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1677-1687. |
[5] | YAN Xingqing, DAI Xingtao, YU Jianliang, LI Yue, HAN Bing, HU Jun. Research progress of high-pressure hydrogen leakage and jet flow [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1118-1128. |
[6] | QIAO Yuan, QIU Chang, QIAN Jinyuan, GAN Ruibin, XU Chunming, JIN Zhijiang. Analysis of erosion and cavitation wear in the cage-typed control valve [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5111-5120. |
[7] | YANG Fengling, LIANG Guolin, ZHANG Cuixun, WANG Guichao. Drag reduction performance of a hydrophobic Rushton impeller [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4682-4690. |
[8] | LAI Kui, WANG Shibo, XU Jianxin, XIAO Qingtai, WANG Hua, LI Chunlin. Simulation and mechanism analysis of discontinuous spoiler enhanced stirring [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2871-2883. |
[9] | ZHU Mingjun, HU Dapeng. Simulation and experimental analysis of the influence of operating parameters on oil-water-sand separation performance of three-phase decanter centrifuge [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5188-5199. |
[10] | LIN Weixiang, SU Gangchuan, CHEN Qiang, WEN Jian, AKRAPHON Janon, WANG Simin. Influencing factors of ultrasound enhanced heat transfer of immersed coil heat exchanger [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 40-51. |
[11] | WANG Kai, HUANG Hui, NAN Cuihong, WANG Yueshe, LU Jinling. Simulation of corrosion kinetics in stratified oil-water flows [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 40-47. |
[12] | WANG Bingjie, LI Hui, YANG Xiaoyong, BAI Zhishan. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735. |
[13] | Nan WEI, Xuan WU, Yuxuan BO, Peng LIU, Jun MA. Bubble formation and detachment behaviors on surface layer of packed particles [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 678-687. |
[14] | LIU Shaobin, QI Hong, YU Zhiqiang, HE Mingjian, YU Xikui. Performance analysis and parameter optimization of mini-channel using Taguchi method [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6409-6422. |
[15] | SUN Jingchen, LIU Hailong, WANG Junfeng, HE Fachao. Flow visualization by PLIF technique and numerical modeling of mixing enhancement in stirred tank under electric fields [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6547-6556. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |