Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (07): 2455-2472.DOI: 10.16085/j.issn.1000-6613.2018-0117
Previous Articles Next Articles
ZONG Guoqiang, XIAO Jichang
Received:
2018-01-15
Revised:
2018-03-07
Online:
2018-07-05
Published:
2018-07-05
宗国强, 肖吉昌
通讯作者:
肖吉昌,研究员,博士生导师,研究方向为氟化学、萃取剂及熔盐化学。
作者简介:
宗国强(1972-),男,博士,研究方向为氟化物熔盐的制备及应用。
基金资助:
CLC Number:
ZONG Guoqiang, XIAO Jichang. Advances in the preparation and application of fluoride molten salts[J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2455-2472.
宗国强, 肖吉昌. 氟化物熔盐的制备及其应用进展[J]. 化工进展, 2018, 37(07): 2455-2472.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-0117
[1] 谢刚. 熔融盐理论与应用[M]. 北京:冶金工业出版社, 1998. XIE G. Theory and application of molten salt[M]. Beijing:Metallurgical Industry Press,1998. [2] 张士宪, 赵晓萍, 李运刚. 高温熔盐体系的应用及研究进展[J]. 电镀与精饰, 2016, 38(9):22-27. ZHANG S X, ZHAO X P, LI Y G. Application and researching progress of high temperature molten salt system[J]. Plating and Finishing, 2016, 38(9):22-27. [3] 张明杰,王兆文. 熔盐电化学原理与应用[M]. 北京:化学工业出版社, 2006. ZHANG M J, WANG Z W. Principle and application of molten salt electrochemistry.[M]. Beijing:Chemical Industry Press, 2006. [4] 王为民, 姚礼之, 李路. 氟的应用与元素氟的制取[J].有机氟工业, 1998(3):38-44. WANG W M, YAO L Z, LI L. The application of fluorine and the preparation of element fluorine[J]. Organo-fluorine Industry, 1998(3):38-44. [5] GROULT H. Electrochemistry of fluorine production[J]. Journal of Fluorine Chemistry, 2003, 119(2):173-189. [6] KHOKHLOV V, IGNATIEV V, AFONICHKIN V. Evaluating physical properties of molten salt reactor fluoride mixtures[J]. Journal of Fluorine Chemistry, 2009, 130(1):30-37. [7] SERP J, ALLIBERT M, BENES O, et al. The molten salt reactor (MSR) in generation IV:overview and perspectives[J]. Progress in Nuclear Energy, 2014, 77:308-319. [8] WILLIAMS D F, TOTH L M, CLARNO K T. Assessment of candidate molten salt coolants for the advanced high-temperature reactor (AHTR)[R]. 2006, ORNL/TM-2006/12, Oak Ridge National Laboratory. [9] WALDROP M M,Nuclear energy:radical reactors[J]. Nature,2012, 492:26-29. [10] FORSBERG C W, PETERSON P F, ZHAO H. High-temperature liquid-fluoride-salt closed-brayton-cycle solar power towers[J]. Journal of Solar Energy Engineering, 2007, 129(2):141-146. [11] 吴耀明,苏明忠,杜森林. 熔融盐研究进展[J]. 化工进展, 1995, 14(5):5-7, 28. WU Y M, SU M Z, DU S L. Status and development of molten salts[J].Chemical Industry and Engineering Progress, 1995, 14(5):5-7, 28. [12] SHAFFER J H. Preparation and handling of salt mixtures for the molten salt reactor experiment[R]. ORNL4616, 1-45. [13] PENG H, SHEN M, ZUO, et al. Electrochemical technique for detecting the formation of uranium-containing precipitates in molten fluorides[J]. Electrochimica Acta, 2016, 222:1528-1537. [14] KHOKHLOV V, KORZUN I, DOKUTOVICH V, et al. Heat capacity and thermal conductivity of molten ternary lithium, sodium, potassium, and zirconium fluorides mixtures[J]. Journal of Nuclear Materials, 2011, 410(1):32-38. [15] 宗国强,陈博,张龙,等. FLiNaK熔盐的制备[J].核技术, 2014, 37(5):050604-1-050604-6. ZONG G Q, CHEN B, ZHANG L, et al. Preparation of FLiNaK molten salt[J]. Nuclear Techniques, 2014, 37(5):050604-1-050604-6. [16] 程进辉,安学会,张鹏,等. FKZr的热物性及热稳定性研究[J]. 核技术, 2014, 37(9):090602-1-050602-4. CHENG J H, AN X H, ZHANG P, et al. Experimental investigation on the thermal physical properties and thermal stability of FKZr[J]. Nuclear Techniques, 2014, 37(9):090602-1-050602-4. [17] 王建东,张国欣,耿俊霞. 含钍氟化物熔盐和/或含铀氟化物熔盐及制备方法:106653102A[P]. 2017-05-10. WANG J D, ZHANG G X, GENG J X. Thorium fluoride-containing molten salt and/or uranium fluoride-containing molten salt and preparation method thereof:CN106653102A[P]. 2017-05-10. [18] 廖春发, 汤浩, 王旭, 等. Na3AlF6-AlF3-LiF-MgF2-Al2O3-Nd2O3-CuO熔盐体系电导率的研究[J]. 稀有金属与硬质合金, 2016, 44(1):60-64. LIAO C F, TANG H, WANG X, et al. Study on electrical conductivity of Na3AlF6-AlF3-LiF-MgF2-Al2O3-Nd2O3-CuO molten salt system[J]. Rare Metals and Cemented Carbides, 2016, 44(1):60-64. [19] LEE Y J, LEE T H, KIMA D Y, et al. Microstructural and corrosion characteristics of tantalum coatings prepared by molten salt electrodeposition[J]. Surface & Coatings Technology, 2013, 235:819-826. [20] KONDO M, NAGASAKA T, TSISAR V. Corrosion of reduced activation ferritic martensitic steel JLF-1 in purified Flinak at static and flowing conditions[J]. Fusion Engineering and Design, 2010, 85(7):1430-1436. [21] LOVERING D G, GALE R J. Molten salt techniques[M]. New York:Plenum Press, 1983. [22] AFONICHKIN V, BOVET A, SHISHKIN V. Salts purification and redox potential measurement for the molten LiF-ThF4-UF4 mixture[C]//Proceedings of the First ACSEPT International Workshop Lisbon, Portugal, 2010. [23] 宗国强,陈博,高敏,等. FLiNaK熔盐中微量氧的测定[J]. 中国无机分析化学, 2015, 5(1):45-48. ZONG G Q, CHEN B, GAO M, et al. Determination of trace oxygen in FLiNaK molten salt[J]. Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(1):45-48. [24] ZONG G Q, CUI Z H, SUN X G, et al. One-step synthesis of high-purity Li2BeF4 molten salt[J].Journal of Fluorine Chemistry, 2016, 181:30-35. [25] GRIMES W R. Chemical research and development for molten-salt breeder reactors[R]. ORNL-TM-1853, Oak Ridge National Laboratory, 1967. [26] SMOLIK G, PAWELKO R, MORIMOTO Y, et al. Mobilization measurements from Flibe under argon and air flow[J]. Journal of Nuclear Materials, 2004, 329-333:1322-1326. [27] ANDERL R A, FUKADA S, SMOLIK G R, et al. Deuterium/tritium behaviour in Flibe and Flibe-facing materials[J]. Journal of Nuclear Materials, 2004, 329-333:1327-1331. [28] ZHENG G, HE L, CARPENTER D, et al. Corrosion-induced microstructural developments in 316 stainless steel during exposure to molten Li2BeF4(FLiBe) salt[J]. Journal of Nuclear Materials, 2016, 482:147-155. [29] KONDO M, NAGASAKA T, XU Q, et al. Corrosion characteristics of reduced activation ferritic steel JLF-1(8.92Cr-2W) in molten salts Flibe and Flinak[J]. Fusion Engineering and Design, 2009, 84:1081-1085. [30] OUYANG F Y, CHANG C H, YOU B C, et al. Effect of moisture on corrosion of Ni-based alloys in molten alkali fluoride FLiNaK salt environments[J]. Journal of Nuclear Materials, 2013, 437:201-207. [31] ZONG G Q, ZHANG Z B, SUN J H, et al. Preparation of high-purity molten FLiNaK salt by the hydrofluorination process[J]. Journal of Fluorine Chemistry, 2017, 197:134-141. [32] HOU J, YU G J, ZENG C L, et al. Effects of exposing duration on corrosion performance in weld joint of Ni-Mo-Cr alloy in FLiNaK molten salt[J]. Journal of Fluorine Chemistry, 2016, 191:110-119. [33] 左勇,谢宏伟,申淼,等. 脱氧阳极、氟化物熔盐电解脱氧的装置及电解方法:103572318A[P]. 2014-02-12. ZUO Y, XIE H W, SHEN M, et al. Deoxidizing anode, apparatus and electrolysis method for fluoride molten salt electrolysis deoxidization:CN103572318A[P]. 2014-02-12. [34] 黄卫,蒋锋,田丽芳,等. 熔盐的电化学净化方法:106283112A[P].2017-01-04. HUANG W, JIANG F, TIAN L F, et al. Molten salt electrochemical purification method:106283112A[P]. 2017-01-04. [35] WANG H, LIU S, LI B, et al. Characterization and removal of oxygen ions in LiF-NaF-KF melt by electrochemical methods[J]. Journal of Fluorine Chemistry, 2015, 175:28-31. [36] SHEN M, PENG H, GE M, et al. Use of square wave voltammeter for online monitoring of O2-concentration in molten fluorides at 600 oC[J]. Journal of Electroanalytical Chemistry, 2015, 748:34-39. [37] FELKER L K, TOTH L M. Fluorine gettering by activated charcoal in a radiation environment[J]. Separation Science and Technology, 1988, 23:1959-1968. [38] XIE M, LI L, DING Y, et al. Study on the mechanism of deoxidization and purification for Li2BeF4 molten salt via graphite nanoparticles[J]. Journal of Nuclear Materials, 2017, 487:317-322. [39] 谢雷东,朱国平,张国欣,等.一种熔盐的脱氧方法及脱氧后的熔盐:106517097A[P]. 2017-03-22. XIE L D, ZHU G P, ZHANG G X, et al. Deoxidation method of molten salt and molten salt after deoxidation:CN106517097A[P]. 2017-03-22. [40] CALDERONI P, SHARPE P, NISHIMURA H, et al. Control of molten salt corrosion of fusion structural materials by metallic beryllium[J]. Journal of Nuclear Materials, 2009, 386-388:1102-1106. [41] GREEN G L, HUNT J B, SUTULA R A. Purification of FLINAK with bromine pentafluoride[J]. Journal of Inorganic and Nuclear Chemistry, 1973, 35(12):4305-4307. [42] DELPECH S, CABET C, SLIM C, et al. Molten fluorides for nuclear applications[J]. Materials Today, 2010, 13(5):34-41. [43] SALANNE M,SIMON C,TURQ P,et al. Heat-transport properties of molten fluorides:determination from first-principles[J]. Journal of Fluorine Chemistry, 2009, 130(1):38-44. [44] EMME E M,Aeronautics and astronautics:an american chronology of science and technology in the exploration of space[R]. Washington D C, 1915-1960:49-63. [45] ERGEN W K, CALLIHAN A D, MILLS C B. The aircraft reactor experiment-physics[J]. Nuclear Science and Engineering, 1957, 2:826-840. [46] INGERSOLL D T, et al. Status of pre-conceptual design of the advanced high temperature reactor (AHTR) (ORNL/TM-2004/104)[R]. Tennessee:ORNL, 2004. [47] ROBERTSON R C. Conceptual design study of a single-fluid molten-salt breeder reactor(ORNL-4541)[R]. Tennessee:ORNL, 1971. [48] 江绵恒,徐洪杰,戴志敏. 未来先进核裂变能-TMSR核能系统[J]. 中国科学院院刊, 2012, 27(3):366-374. JIANG M H, XU H J, DAI Z M. Advanced fission energy program-TMSR nuclear energy system[J]. Bulletin of Chinese Academy of Sciences, 2012, 27(3):366-374. [49] DEGTYAREV A, MYASNIKOV A, PONOMAREV L. Molten salt fast reactor with U-Pu fuel cycle[J]. Progress in Nuclear Energy, 2015, 82:33-36. [50] 莱斯利·C·德万,马克·马西. 熔盐反应堆:105684090A[P]. 2016-06-15. DEWAN L C, MASSIE M. Molten salt reactor:CN105684090A[P]. 2016-06-15. [51] 吴宗鑫,张作义. 先进核能系统和高温气冷堆[M]. 北京:清华大学出版社, 2004. WU Z X, ZHANG Z Y.Advanced nuclear energy systems and high temperature gas cooled reactors[M].Beijing:Tsinghua University Press, 2004. [52] BAUMER R, KALINOWSKI I, ROHLER E, et al. Construction and operating experience with the 300-MW THTR nuclear power plant[J]. Nuclear Engineering and Design, 1990, 121:155-166. [53] VICTOR I, OLGA F, IVAN G, et al. Progress in development of Li,Be,Na/F molten salt actinide recycler & transmuter Concept[C]//Proceedings of ICAPP 2007. Nice, France:ICAPP, 2007. [54] MATHIEU L, HEUER D, BRISSOT R, et al. The thorium molten salt reactor:moving on from the MSBR[J]. Progress in Nuclear Energy, 2006, 48:664-679. [55] WILSON T R. Molten salt fission reactor:US20150243376A1[P]. 2015-08-27. [56] 汪洋,唐忠锋,谢雷东,等. 高温氟化盐对熔盐堆用材料的腐蚀行为研究进展[J].化学通报, 2013, 76(4):307-312. WANG Y, TANG Z F, XIE L D, et al. The research progress of corrosion behavior of materials for molten salt reactors in high temperature molten fluorides[J]. Chemistry Bulletin, 2013, 76(4):307-312. [57] LI X L, HE S M, ZHOU X T, et al. High-temperature corrosion behavior of Ni-16Mo-7Cr-4Fe superalloy containing yttrium in molten LiF-NaF-KF salt[J]. Journal of Nuclear Materials, 2015, 464:342-345. [58] HE Z, GAO L, QI W, et al. Molten FLiNaK salt infiltration into degassed nuclear graphite under inert gas pressure[J]. Carbon, 2015, 84:511-518. [59] LIU L, ZHANG D, LU Q, et al. Preliminary neutronic and thermal-hydraulic analysis of a 2 MW thorium-based molten salt reactor with solid fuel, progress in nuclear energy[J]. Progress in Nuclear Energy, 2016, 86:1-10. [60] YE X X, AI H, GUO Z, et al. The high-temperature corrosion of hastelloy N alloy (UNS N10003) in molten fluoride salts analysed by STXM, XAS, XRD, SEM, EPMA,TEM/EDS[J]. Corrosion Science, 2016, 106:249-259. [61] 周金豪,孙波,佘长锋,等. 熔盐冷冻壁厚度测量方法[J].化工进展, 2016, 35(8):2373-2380. ZHOU J H, SUN B, SHE C F, et al. Experimental study on the thickness detection of molten salt frozen-wall[J]. Chemical Industry and Engineering Progress, 2016, 35(8):2373-2380. [62] 赵素芳,汪洋,孙华,等. 一种含铬的缓蚀熔盐及其制备工艺:106590547A[P]. 2017-04-26. ZHAO S F, WANG Y, SUN H, et al. Molten salt containing chromium with corrosion inhibition and its preparation method:CN106590547A[P]. 2017-04-26. [63] IGNATIEV V, SURENKOV A. Alloys compatibility in molten salt fluorides:kurchatov Institute related experience[J]. Journal of Nuclear Materials, 2013, 441(1/2/3):592-603. [64] PAVLIK V, KONTRIK M, BOCA M. Corrosion behavior of Incoloy 800H/HT in the fluoride molten salt FLiNaK+MFx (MFx=CrF3, FeF2, FeF3 and NiF2)[J]. New Journal of Chemistry, 2015, 39:9841-9847. [65] WANG Y, TANG Z F, FU Y, et al. Corrosion behavior of ZrC-SiC composite ceramics in LiF-NaF-KF molten salt at high temperatures[J].Ceramics International, 2015, 41:12996-13005. [66] ZHU H, HOLMES R, HANLEY T, et al. Effects of bubbles on high-temperature corrosion of helium ion-irradiated Ni-based alloy in fluoride molten salt[J]. Corrosion Science, 2017, 125:184-193. [67] WANG Y, LIU H J, YU, G. et al.Electrochemical study of the corrosion of a Ni-based alloy GH3535 in molten (Li,Na,K) F at 700℃[J]. Journal of Fluorine Chemistry, 2015, 178:14-22. [68] WANG P, ZHANG C, XIA J, et al. Stability of calcia-stabilized zirconia in fluoride molten salts under different voltage[J]. Journal of the Ceramic Society of Japan, 2015, 123:389-393. [69] 廖映华,云虹, 王春. 乏燃料后处理技术研究现状[J].四川化工, 2012, 15(4):12-15. LIAO Y H, YUN H, WANG C. A survey of research on reprocessing technology of spent nuclear fuel's[J]. Sichuan Chemical Industry, 2012, 15(4):12-15. [70] 王有群,何辉,林如山,等. 无机氯化物熔盐在乏燃料干法后处理中的应用进展[J]. 无机盐工业, 2016, 48(8):1-5. WANG Y Q, HE H, LIN R S, et al. Application progress of inorganic molten chlorides in dry reprocessing of spent fuel[J]. Inorganic Chemicals Industry, 2016, 48(8):1-5. [71] UHLIR J, MARECEK M, TULACKOVA R, et al. Development of fluoride reprocessing technologies devoted to molten-salt reactor systems[C]//Global 2007:Advanced Nuclear Fuel Cycles and Systems. Boise, United States, 2007:1490-1496. [72] LEE J H, KANG Y H, HWANG S C, et al. Separation characteristics of a spent fuel surrogate in the molten salt electrorefining process[J]. Journal of Materials Processing Technology, 2007, 189:268-272. [73] SOUCEK P, LISY F, TULACKOVA R, et al. Development of electrochemical separation methods in molten LiF-NaF-KF for the molten salt reactor fuel cycle[J]. Journal of Nuclear Science and Technology, 2005, 42(12):1017-1024. [74] CHAMELOT P, MASSOT L, HAMEL C, et al. Feasibility of the electrochemical way in molten fluorides for separating thorium and lanthanides and extracting lanthanides from the solvent[J]. Journal of Nuclear Materials, 2007, 360(1):64-74. [75] HERRMANN S D. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel:US8734738B1[P]. 2014-05-27. [76] 林如山,何辉,叶国安,等. 氟盐体系Ce(Ⅲ)的电化学行为研究[C]//全国核化学与放射化学学术讨论会, 2012. LIN R S, HE H, YE G A, et al. Study on electrochemical behavior of Ce (Ⅲ) in fluorine salt system[C]//National Symposium on Nuclear Chemistry and Radiochemistry, 2012. [77] 龙德武,黄卫,蒋锋,等. 干法后处理中的熔盐电化学技术[C]//全国核化学与放射化学学术讨论会, 2012. LONG D W, HUANG W, JIANG F, et al. Molten salt electrochemical technology in dry reprocessing of spent fuel[C]//National Symposium on Nuclear Chemistry and Radiochemistry, 2012. [78] TAKASAWA Y, ONOUE T, HOSHINO Y, et al. Improvement of current efficiency in electrowinning uranium metal in molten fluorides[J]. Denki Kagaku, 1999, 67(6):718-721. [79] ALANGI N, MUKHERJEE J, GANTAYET L M. Solubility of uranium oxide in molten salt electrolysis bath of Li-BaF2 with LaF3 additive[J]. Journal of Nuclear Materials, 2016, 470:90-96. [80] 刘刈,王长水,曹龙浩,等. 氟化物熔盐中铀离子的电化学行为研究[J].化学通报, 2013, 76(11):1049-1052. LIU Y, WANG C S, CAO L H, et al.The electrochemical behavior of uranium ions in Lif-Naf molten salts[J]. Chemistry Bulletin, 2013, 76(11):1049-1052. [81] 谢宏伟,王锦霞,翟玉春,等. 低温熔盐铝电解的研究进展[J]. 材料导报, 2009, 23(9):13-18. XIE H W, WANG J X, ZHAI Y C, et al. Research on low temperature aluminium electrolysis in molten salts[J]. Materials Reviews, 2009, 23(9):13-18. [82] 杨绮琴,段淑贞. 熔盐电化学的新进展[J].电化学, 2001, 7(1):10-17. YANG Q Q, DUAN S Z. The new developments of molten salt electrochemistry[J]. Electrochemistry, 2001, 7(1):10-17. [83] GOUPIL G, HELLE S, DAVIS B. et al. Anodic behavior of mechanically alloyed Cu-Ni-Fe and Cu-Ni-Fe-O electrodes for aluminum electrolysis in low-temperature KF-AlF3 electrolyte[J]. Electrochimica Acta, 2013, 112:176-182. [84] 马秀芳,李德祥,陈建设,等. Na3AlF6-AlF3-LiF-CaF2系熔体的等溶初晶温度和等溶变温密度[J]. 中国有色金属学报, 2000, 10(1):109-112. MA X F, LI D X, CHEN J S, et al. Initial crystallization temperature and density at nonequal temperature of Na3AlF6-AlF3-LiF-CaF2 system under isosolubity of alumina[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(1):109-112. [85] SHARMA R A. Method for producing aluminum metal from aluminum trichloride, US 6066247A[P]. 2000-05-23. [86] LA CAMERA A F, TOMASWICK K M, RAY S P, et al. Process and apparatus for low temperature electrolysis of oxides, US 5279715 A[P]. 1994-01-18. [87] THONSTAD J, et al. Alternative electrolyte compositions for aluminum electrolysis[J]. Trans. Inst. Min. Metall. Sect. C:Miner Process Extr. Metal, 2005, 114(3):C188. [88] KAN H, WANG Z W, SHI Z N, et al. Liquidus temperature, density and electrical conductivity of low temperature electrolyte for aluminum electrolysis[C]//Light Metals 2007. Warrendale:Minerals, Metals & Materials Soc, 2007:531. [89] 王兆文,石忠宁,高炳亮,等. 一种高电导率铝电解用低温电解质及其使用方法:101386996[P].2009-03-18. WANG Z W, SHI Z N, GAO B L, et al. High conductivity electrolyte and the use method for low temperature aluminum electrolysis:CN101386996[P]. 2009-03-18. [90] 杨少华. 以MgO为原料熔盐电解法制备Mg-Al合金的研究[D]. 沈阳:东北大学, 2008. YANG S H. Study on preparation Al-Mg alloy by molten salt electrolysis method from magnesium oxide[D]. Shenyang:Northeastern University, 2008. [91] 张明杰,李金丽,梁家骁. 熔盐电解法生产Al-Sc合金[J].东北大学学报(自然科学版), 2003, 24(4):358-360. ZHANG M J, LI J L, LIANG J X. Preparation of Al-Sc alloys by molten salt electrolysis[J]. Journal of Northeastern University (Natural Science), 2003, 24(4):358-360. [92] 田忠良,赖延清,杨树,等. 一种制备铝-钪合金的熔盐电解方法:104746106A[P]. 2015-07-01. TIAN Z L, LAI Y Q, YANG S, et al. Method for preparing aluminum-scandium intermediate alloy by molten salt electrolysis:CN104746106A[P]. 2015-07-01. [93] 张小联,郑鑫,王虹. 一种液态阴极熔盐电解法制备铝钐中间合金的方法:104775137A[P]. 2015-07-15. ZHANG X L, ZHENG X, WANG H. Method for preparing aluminum samarium master alloy by liquid cathode molten salt electrolysis process:CN104775137A[P]. 2015-07-15. [94] 胡建锋,徐璟玉,熊斌,等.熔盐电解提纯多晶硅的研究进展[J]. 有色金属工程, 2011(3):38-40. HU J F, XU J Y, XIONG B, et al. Research progress of molten salt electrolytic purification polysilicon[J]. Nonferrous Metals, 2011(3):38-40. [95] 蔡宗英,张莉霞,李运刚. 电沉积硅技术的历史和发展趋势[J]. 湿法冶金, 2004, 23(4):188-190. CAI Z Y, ZHANG L X, LI Y G. History and development direction of silicon electrodeposition[J]. Hydrometallurgy of China, 2004, 23(4):188-190. [96] STUBERGH J R, LIU Z. Preparation of pure silicon by electrowinning in a bytownite-crylite melt[J]. Metallurgical and Materials Transactions B, 1996, 27B:895-899. [97] OLSON J M, CARLETON K L. A semipermeable a node for silicon electrorefining[J]. Journal of The Electrochemical Society, 1981, 128(12):2698-2699. [98] SHARMA I G, MUKHERJEE T K. A study on purification of metallurgical grade silicon by molten salt electrorefining[J]. Metallurgical Transactions B, 1986, 17B:395-397. [99] BIEBER A L, MASSOT L, GIBILARO M, et al. Silicon electrodeposition in molten fluorides[J]. Electrochimica Acta, 2012, 62:282-289. [100] SAKANAKA Y, GOTO T. Electrodeposition of Si film on Ag substrate in molten LiF-NaF-KF directly dissolving SiO2[J]. Electrochimica Acta, 2015, 164:139-142. [101] RYU H Y, AN Y S, JANG B Y, et al.Formation of high purity Si nanofiber from metallurgical grade Si by molten salt electrorefining[J]. Materials Chemistry and Physics, 2012, 137:160-168. [102] HAARBERG G M, FAMIYEH L, MARTINEZ A M, et al. Electrodeposition of silicon from fluoride melts[J]. Electrochimica Acta, 2013, 100:226-228. [103] MASSOT L, BIEBER A L, GIBILARO M, et al. Silicon recovery from silicon-iron alloys by electrorefining in molten fluorides[J]. Electrochimica Acta, 2013, 96:97-102. [104] 邹祥宇,谢宏伟,翟玉春,等.熔盐电解精炼制备太阳能级多晶硅[J].东北大学学报(自然科学版), 2012, 33(12):1741-1744. ZOU X Y, XIE H W, ZHAI Y C, et al.Preparation of solar grade silicon by electrorefining[J]. Journal of Northeastern University (Natural Science), 2012, 33(12):1741-1744. [105] 贾明,田忠良,赖延清,等. 电解精炼制备太阳级硅杂质研究[J]. 物理学报, 2010, 59(3):1938-1945. JIA M, TIAN Z L,LAI Y Q, et al. Study on the removal of impurities in silicon by electrorefining[J].Acta Physica Sinica, 2010, 59(3):1938-1945. [106] 贾明,赖延清,田忠良,等. Na3AlF6-LiF熔盐体系中硅的电沉积行为[J]. 物理化学学报, 2011, 27(5):1108-1115. JIA M, LAI Y Q, TIAN Z L, et al. Electrodeposition behavior of silicon from Na3AlF6-LiF melts[J]. Acta Phys. -Chim.Sin., 2011, 27(5):1108-1115. [107] OISHI T, KOYAMA K, TANAKA M. Electrorefining of silicon using molten salt and liquid alloy electrodes[J]. Journal of The Electrochemical Society, 2016, 163(14):E385-E389. [108] 张志宏,梁行方,琚建勇,等. 我国氟盐体系氧化钕电解制备金属钕技术现状及进展[J]. 有色冶炼, 2001, 30(2):23-26. ZHANG Z H, LIANG X F, JU J Y, et al. Present situation and latest progress of process for producing metallic Neodymium by electrolysis of neodymium oxide with fluoride salts[J]. Non-Ferrous Smelting, 2001, 30(2):23-26. [109] 陈国华,曹永存,刘玉宝,等. 熔盐电解法制备镨钕钆合金的研究[J]. 中国稀土学报, 2015, 33(2):206-210. CHEN G H, CAO Y C, LIU Y B, et al. Preparation of Pr-Nd-Gd alloys by molten salt electrolysis[J]. Journal of the Chinese Society of Rare Earths, 2015, 33(2):206-210. [110] 焦士琢,吴迪武,牛树生,等.一种连续电解生产金属钕及钕铁合金的槽型结构:85100748[P]. 1986-07-02. JIAO S Z, WU D W, NIU S S, et al. An electrolysis trough structure for continuous production of metal Nd and Nd-Fe alloy:CN85100748[P]. 1986-07-02. [111] 庞思明,颜世宏,李宗安,等. 我国熔盐电解法制备稀土金属及其合金工艺技术进展[J].稀有金属, 2011, 35(3):440-450. PANG S M, YAN S H, LI Z A, et al. Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China[J]. Chinese Journal of Rare Metals, 2011, 35(3):440-450. [112] 郭探,王世栋,叶秀深,等. 熔盐电解法制备稀土合金研究进展[J]. 中国科学(化学), 2012, 42(9):1328-1336. GUO T, WANG S D, YE X S, et al. Research progress in the preparation of rare earth alloys by molten salt electrolysis method[J]. SCIENTIA SINICA(Chimica), 2012, 42(9):1328-1336. [113] 陈国华,王小青,刘玉宝,等. 熔盐电解法制备镨钕镝合金的研究[J].稀土, 2015, 36(1):80-84. CHEN G H, WANG X Q, LIU Y B, et al. Preparation of Pr-Nd-Dy alloys by molten salt electrolysis[J]. Chinese Rare Earths, 2015, 36(1):80-84. [114] 王健,华中胜,马欢,等. 熔盐电解法制备稀土镁合金的研究进展[J]. 稀土, 2017, 38(2):100-113. WANG J, HUA Z S, MA H, et al.Research progress on preparation of rare earth magnesium alloys by molten salt electrolysis[J]. Chinese Rare Earths, 2017, 38(2):100-113. [115] STEFANIDAKI E, HASIOTIS C, KONTOYANNIS C. Electrodeposition of neodymium from LiF-NdF3-Nd2O3melts[J]. Electrochimica Acta, 2001, 46:2665-2670. [116] 陈德宏,颜世宏,李宗安,等. NdF3-LiF-Nd2O3熔盐体系中下阴极电解金属钕研究[J]. 中国稀土学报, 2009, 27(2):302-305. CHEN D H, YAN S H, LI Z A, et al.Liquid-cathode cell for neodymium electrolysis in NdF3-LiF-Nd2O3 molten salt[J]. Journal of the Chinese Rare Earth Society, 2009, 27(2):302-305. [117] 廖春发,罗林生,王旭,等. 熔盐电解制备铝钕中间合金及其机理[J]. 中国有色金属学报, 2015, 25(12):3523-3529. LIAO C F, LUO L S, WANG X, et al. Preparation for Al-Nd intermediate alloy by molten-salt electrolysis method and its mechanism[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(12):3523-3529. [118] YANG S, YANG F, LIAO C, et al. Electrodeposition of magnesium-yttrium alloys by molten salt electrolysis[J]. Journal of Rare Earths, 2010, 28:385-388. [119] 彭光怀,郭雪锋,邱承洲,等. 氟化物熔盐共电沉积制备Gd-Mg 中间合金研究[J].昆明理工大学学报(理工版), 2010, 35(2):16-19, 26. PENG G H, GUO X F, QIU C Z, et al.Preparation of Gd-Mg master alloy by co-electrodeposition method in fluoride molten salt[J]. Journal of Kunming University of Science and Technology (Science and Technology), 2010, 35(2):16-19, 26. [120] 张小联,彭光怀,郭雪峰,等. 氟化物熔盐共电沉积制备Gd-Zr-Mg合金的研究[J]. 有色金属科学与工程, 2011, 2(4):1-3, 11. ZHANG X L, PENG G H, GUO X F, et al.Gd-Zr-Mg master alloy production by co-electrodeposition in fluoride molten salt[J]. Nonferrous Metals Science and Engineering, 2011, 2(4):1-3, 11. [121] 王小青,陈国华,侯复生,等. 一种熔盐电解制备稀土镝合金的方法:103924265A[P]. 2014-07-16. WANG X Q, CHEN G H, HOU F S, et al. Production of rare earth-dysprosium alloy by molten salt electrolysis:CN103924265A[P]. 2014-07-16. [122] 蔺继荣, 赵良忠, 韩福军. 熔盐电解法生产镝铁合金工艺及设备:1827860A[P]. 2006-09-06. LIN J R, ZHAO L Z, HAN F J. Process and apparatus for production of Dy-Fe alloy by molten salt electrolysis:CN1827860A[P]. 2006-09-06. [123] 颜世宏,李宗安,李振海,等. 一种熔盐电解制备钆铁合金的方法:101200806A[P]. 2008-06-18. YAN S H, LI Z A, LI Z H, et al. Manufacture of Gd-Fe alloy by molten salt electrolysis:CN101200806A[P]. 2008-06-18. [124] 张小联,彭光怀,胡珊玲,等. 氟化体系共电沉积制备Gd-Mg 中间合金的方法:101117723A[P]. 2008-02-06. ZHANG X L, PENG G H, HU S L, et al. Manufacture of Gd-Mg master alloy by coelectrodeposition in fluoride molten salt:CN101117723A[P]. 2008-02-06. [125] 张志宏,陈国华,于兵,等. 一种共沉积法制备稀土钆合金的方法:103924266A[P]. 2014-07-16. ZHANG Z H, CHEN G H, YU B, et al. Production of rare earth-gadolinium alloy by codeposition in molten salt bath:CN103924266A[P]. 2014-07-16. [126] 焦芸芬,王旭,廖春发,等. 稀土改性制备铜-铝-稀土中间合金熔盐电解方法及合金:105177632A[P]. 2015-12-23. JIAO Y F, WANG X, LIAO C F, et al. Molten salt electrolysis method for preparation of copper-aluminum-rare earth intermediate alloy with rare earth modification and alloy:CN105177632A[P]. 2015-12-23. [127] 刘庆生,钟春明,张丹城. 一种钕铁硼油泥废料电解制备钕铁硼合金:106319575A[P]. 2017-01-11. LIU Q S, ZHONG C M, ZHANG D C. Method for preparation of NdFeB alloy via electrolysis of neodymium-iron-boron oily sludge waste:CN106319575A[P]. 2017-01-11. [128] 彭光怀,杜西龙,郭华彬. 一种稀土镁镍基储氢合金电解共析合金化方法:104131315A[P]. 2014-11-05. PENG G H, DU X L, GUO H B. Electrolysis co-precipitation alloying method of rare earth-magnesium-nickel-based hydrogen-storage alloy:CN104131315A[P]. 2014-11-05. [129] 曹永存,张志宏,陈国华,等. 一种制备稀土镁合金的方法及稀土钇钕镁合金:105624737A[P]. 2016-06-01. CAO Y C, ZHANG Z H, CHEN G H, et al. Method for preparing yttrium neodymium magnesium rare earth alloy:CN105624737A[P]. 2016-06-01. [130] 赵二雄,王小青,刘玉宝,等. 一种熔盐电解制备镨钕镝铽四元合金的方法:105603461A[P]. 2016-05-25. ZHAO E X, WANG X Q, LIU Y B, et al. Preparation method of praseodymium-neodymium-dysprosium-terbium quaternary alloy by molten salt electrolysis:CN105603461A[P]. 2016-05-25. [131] 张密林,韩伟,秦文竺. 一种熔盐电解分离氧化镨和氧化镝的方法:102134728A[P]. 2011-07-27. ZHANG M L, HAN W, QIN W Z. Method for separating praseodymium oxide and dysprosium oxide by molten salt electrolysis:CN102134728A[P]. 2011-07-27. [132] 李梅,刘垚臣,张密林,等. 熔盐体系中电解制备耐热镁铝钕合金的方法:103132108A[P]. 2013-06-05. LI M, LIU Y C, ZHANG M L, et al. Manufacture of heat-resisting magnesium-aluminum-neodymium alloy by electrolysis in molten salt system:CN103132108A[P]. 2013-06-05. [133] 张密林,韩伟,田阳,等. 一种镁锂-铈镧合金及其熔盐电解法制备方法:101302594A[P]. 2008-11-12. ZHANG M L, HAN W, TIAN Y, et al. Molten salt electrolysis method for preparing Mg-Li-Ce-La alloy:CN101302594A[P]. 2008-11-12. [134] 张密林,李梅,赵全友,等. 锂镁钬合金、锂镁钬合金的熔盐电解制备方法及装置:101302593A[P]. 2008-11-12. ZHANG M L, LI M, ZHAO Q Y, et al. Molten salt electrolysis method and apparatus for preparing Mg-Li-Ho alloy:CN101302593A[P]. 2008-11-12. [135] 姜银举,邓永春. 稀土氧化物熔盐电解过程HF气体生成与回收的探讨[J]. 稀土, 2016, 37(2):149-151. JIANG Y J, DENG Y C. Study on the formation and recovery of HF gas during the fused-salt electrolysis of rare earth oxide[J]. Chinese Rare Earths, 2016, 37(2):149-151. [136] ZHU X, SUN S, LU S, et al. Surface tension of light rare earth fluoride molten salts electrolytesystem[J]. Thermochimica Acta, 2016, 636:42-47. [137] 王旭,廖春发,罗林生. Nd2O3对AlF3-(Na/Li) F-Al2O3熔体性质及结构的影响研究[J]. 稀土, 2017, 38(5):1-7. WANG X, LIAO C F, LUO L S. The investigation of the influence of Nd2O3 on properties and structure of AlF3-(Na/Li) F-Al2O3 molten salt[J]. Chinese Rare Earths, 2017, 38(5):1-7. [138] MELLORS G W, SENDEROFF S. Coherent coatings of refractory metal[J]. Science, 1966, 153(3473):1475-1481. [139] 段淑贞,招光文. 难熔金属的熔盐电镀[J]. 稀有金属, 1987, 11(5):376-383. DUAN S Z, ZHAO G W. Molten salt plating of refractory metals[J]. Chinese Journal of Rare Metals, 1987, 11(5):376-383. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | WANG Hao, HUO Jinda, QU Guorui, YANG Jiaqi, ZHOU Shiwei, LI Bo, WEI Yonggang. Research progress of positive electrode material recycling technology for retired lithium batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2702-2716. |
[3] | ZHANG Yixuan, HU Wei, LIU Mengyao, JU Jingge, ZHAO Yixia, KANG Weimin. Research progress of polymer electrolytes in zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1397-1410. |
[4] | CHEN Erjun, ZHANG Yuling, LU Shaolei, DUAN Haiyang, JIN Wenzhang. Stability and physicochemical properties of air nanobubbles [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4673-4681. |
[5] | WANG Yue, ZHENG Xiaohong, TAO Tianyi, LIU Xiuqing, LI Li, SUN Zhi. Review on selective recovery of lithium from cathode materials in spent lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4530-4543. |
[6] | GUAN Haoran, ZHU Lina, ZHU Lingyue, YUAN Dandan, ZHANG Yuqing, WANG Baohui. Progress and challenges of electrochemical synthesis of ammonia from different hydrogen and nitrogen sources [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4098-4110. |
[7] | ZHU Qingshan. Development pathway analyses for various ironmaking routes with ultra-low CO2 emission [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1391-1398. |
[8] | ZHOU Ying, ZHOU Hongjun, XU Chunming. Exploration of hydrogen sources for the low-carbon and green production in the steel industry in China [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1073-1077. |
[9] | HU Huakun, XUE Wendong, JIANG Peng, LI Yong. Research progress of safety additives for lithium ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5441-5455. |
[10] | PAN Di, KONG Jiangrong, LIU Xinnan, HUANG Meiqi, ZHOU Tao. Preparation Li7La3Zr2O12 garnet solid-state electrolyte by wet-chemical technique [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 334-339. |
[11] | GAO Chenxiang, ZHANG Ke, LIU Chunyuan, FENG Xin, HUO Pengfei. Research progress on the application of wood in electrochemistry [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 203-210. |
[12] | SONG Jiechen, XIA Qing, XU Yuxing, TAN Qiangqiang. Recent progress and challenges on all-solid-state lithium ion battery [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5045-5060. |
[13] | ZOU Wenhong, FAN You, ZHANG Yanyan, BAI Zhengshuai, TANG Yuxin. Research progress on room-temperature polymer-based electrolytes for safe solid-state lithium batteries [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5029-5044. |
[14] | ZHAO Chenzi, YUAN Hong, LU Yang, ZHANG Qiang. Review on interfaces in solid-state lithium metal anodes [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4986-4997. |
[15] | LUO Laiming, CHEN Si’an, WANG Haining, ZHANG Jin, LU Shanfu, XIANG Yan. Simulation and optimization of large-scale (200cm2) multiple-serpentine flow field for high temperature polymer electrolyte membrane fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4975-4985. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |