Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5441-5455.DOI: 10.16085/j.issn.1000-6613.2021-2586
• Materials science and technology • Previous Articles Next Articles
HU Huakun(), XUE Wendong(), JIANG Peng, LI Yong
Received:
2021-12-20
Revised:
2022-04-12
Online:
2022-10-21
Published:
2022-10-20
Contact:
XUE Wendong
通讯作者:
薛文东
作者简介:
胡华坤(1997—),男,硕士研究生,研究方向为新能源材料。E-mail:S20200312@xs.ustb.edu.cn。
基金资助:
CLC Number:
HU Huakun, XUE Wendong, JIANG Peng, LI Yong. Research progress of safety additives for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5441-5455.
胡华坤, 薛文东, 蒋朋, 李勇. 锂离子电池安全添加剂的研究进展[J]. 化工进展, 2022, 41(10): 5441-5455.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2586
成膜添加剂 | 特点 |
---|---|
VC、FEC | 具有良好成膜性;提高库仑效率和充电容量保持率 |
腈类 | 较高的介电常数和较低的黏度;结合其他成膜添加剂等联合使用 |
锂盐类 | 热稳定性好,膜阻抗低 |
成膜添加剂 | 特点 |
---|---|
VC、FEC | 具有良好成膜性;提高库仑效率和充电容量保持率 |
腈类 | 较高的介电常数和较低的黏度;结合其他成膜添加剂等联合使用 |
锂盐类 | 热稳定性好,膜阻抗低 |
阻燃添加剂 | 特点 |
---|---|
含磷类阻燃剂 | 阻燃效果好;提高电池的阻抗稳定性 |
卤代类阻燃剂 | 阻燃效果好;有利于稳定SEI膜的形成 |
氮磷复合类阻燃剂 | 优异的阻燃性能和电化学性能;显著降低电池的自加热速率;增强电池的过充电耐受性 |
阻燃添加剂 | 特点 |
---|---|
含磷类阻燃剂 | 阻燃效果好;提高电池的阻抗稳定性 |
卤代类阻燃剂 | 阻燃效果好;有利于稳定SEI膜的形成 |
氮磷复合类阻燃剂 | 优异的阻燃性能和电化学性能;显著降低电池的自加热速率;增强电池的过充电耐受性 |
防过充添加剂 | 特点 |
---|---|
茂金属族化合物 | 过充电后产生不同的放电行为增加了电池的放电容量 |
芳香族化合物 | 减轻分子间寄生反应,还可以减轻由于适度的电子供给效应而导致的自由基阳离子的电子缺乏 |
甲苯、二甲苯、联苯、环己基苯等 | 发生电聚合,在电极和隔膜之间形成一层聚合物膜避免电压升高 |
防过充添加剂 | 特点 |
---|---|
茂金属族化合物 | 过充电后产生不同的放电行为增加了电池的放电容量 |
芳香族化合物 | 减轻分子间寄生反应,还可以减轻由于适度的电子供给效应而导致的自由基阳离子的电子缺乏 |
甲苯、二甲苯、联苯、环己基苯等 | 发生电聚合,在电极和隔膜之间形成一层聚合物膜避免电压升高 |
1 | KULOVA T L, FATEEV V N, SEREGINA E A, et al. A brief review of post-lithium-ion batteries[J]. International Journal of Electrochemical Science, 2020, 15: 7242-7259. |
2 | LIANG X, YUN J F, WANG Y, et al. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries[J]. Nanoscale, 2019, 11(41): 19140-19157. |
3 | GALOS J, PATTARAKUNNAN K, BEST A S, et al. Energy storage structural composites with integrated lithium-ion batteries: a review[J]. Advanced Materials Technologies, 2021, 6(8): 2001059. |
4 | XU K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417. |
5 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
6 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
7 | YUAN M Q, LIU K. Rational design on separators and liquid electrolytes for safer lithium-ion batteries[J]. Journal of Energy Chemistry, 2020, 43: 58-70. |
8 | MAGASINSKI A, DIXON P, HERTZBERG B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9(4): 353-358. |
9 | CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
10 | YONG T Q, WANG J L, MAI Y J, et al. Organosilicon compounds containing nitrile and oligo(ethylene oxide) substituents as safe electrolytes for high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2014, 254: 29-32. |
11 | SPOTNITZ R M, WEAVER J, YEDUVAKA G, et al. Simulation of abuse tolerance of lithium-ion battery packs[J]. Journal of Power Sources, 2007, 163(2): 1080-1086. |
12 | TORABI F, ESFAHANIAN V. Study of thermal-runaway in batteries ( Ⅰ ): Theoretical study and formulation[J]. Journal of the Electrochemical Society, 2011, 158(8): A850. |
13 | WANG Q S, PING P, ZHAO X J, et al. Thermal runaway caused fire and explosion of lithium ion battery[J]. Journal of Power Sources, 2012, 208: 210-224. |
14 | FENG X N, ZHENG S Q, REN D S, et al. Key characteristics for thermal runaway of Li-ion batteries[J]. Energy Procedia, 2019, 158: 4684-4689. |
15 | REN D S, FENG X N, LIU L S, et al. Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition[J]. Energy Storage Materials, 2021, 34: 563-573. |
16 | ZHANG Q S, LIU T T, WANG Q. Experimental study on the influence of different heating methods on thermal runaway of lithium-ion battery[J]. Journal of Energy Storage, 2021, 42: 103063. |
17 | LIU S Q, MA T Y, WEI Z, et al. Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge[J]. Journal of Energy Chemistry, 2021, 52: 20-27. |
18 | WANG W H, HE T F, HE S, et al. Modeling of thermal runaway propagation of NMC battery packs after fast charging operation[J]. Process Safety and Environmental Protection, 2021, 154: 104-117. |
19 | WEN Z P, PENG Y Y, CONG J L, et al. A stable artificial protective layer for high capacity dendrite-free lithium metal anode[J]. Nano Research, 2019, 12(10): 2535-2542. |
20 | 陈玉红, 唐致远, 卢星河, 等. 锂离子电池爆炸机理研究[J]. 化学进展, 2006, 18(6): 823-831. |
CHEN Y H, TANG Z Y, LU X H, et al. Research of explosion mechanism of lithium-ion battery[J]. Progress in Chemistry, 2006, 18(6): 823-831. | |
21 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. |
22 | CHOMBO P V, LAOONUAL Y. A review of safety strategies of a Li-ion battery[J]. Journal of Power Sources, 2020, 478: 228649. |
23 | QI C, ZHU Y L, GAO F, et al. Mathematical model for thermal behavior of lithium ion battery pack under overcharge[J]. International Journal of Heat and Mass Transfer, 2018, 124: 552-563. |
24 | LI B, PAREKH M H, POL V G, et al. Operando monitoring of electrode temperatures during overcharge-caused thermal runaway[J]. Energy Technology, 2021, 9(11): 2100497. |
25 | FENG L, JIANG L H, LIU J L, et al. Dynamic overcharge investigations of lithium ion batteries with different state of health[J]. Journal of Power Sources, 2021, 507: 230262. |
26 | PING P, WANG Q S, HUANG P F, et al. Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method[J]. Applied Energy, 2014, 129: 261-273. |
27 | ZHU J E, WIERZBICKI T, LI W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries[J]. Journal of Power Sources, 2018, 378: 153-168. |
28 | WANG W W, LI Y D, LIN C, et al. State of charge-dependent failure prediction model for cylindrical lithium-ion batteries under mechanical abuse[J]. Applied Energy, 2019, 251: 113365. |
29 | LI H G, ZHOU D, DU C L, et al. Parametric study on the safety behavior of mechanically induced short circuit for lithium-ion pouch batteries[J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 020904. |
30 | LIU B H, JIA Y K, YUAN C H, et al. Safety issues and mechanisms of lithium-ion battery cell upon mechanical abusive loading: a review[J]. Energy Storage Materials, 2020, 24: 85-112. |
31 | LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse[J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. |
32 | LI Y D, WANG W W, LIN C, et al. Safety modeling and protection for lithium-ion batteries based on artificial neural networks method under mechanical abuse[J]. Science China Technological Sciences, 2021, 64(11): 2373-2388. |
33 | LI Y D, WANG W W, LIN C, et al. A safety performance estimation model of lithium-ion batteries for electric vehicles under dynamic compression[J]. Energy, 2021, 215: 119050. |
34 | ZHAO X, REN H, LUO L. Gas bubbles in electrochemical gas evolution reactions[J]. Langmuir, 2019, 35(16): 5392-5408. |
35 | CHA C, YU J X, ZHANG J X. Comparative experimental study of gas evolution and gas consumption reactions in sealed Ni-Cd and Ni-MH cells[J]. Journal of Power Sources, 2004, 129(2): 347-357. |
36 | STRAUSS F, TEO J H, SCHIELE A, et al. Gas evolution in lithium-ion batteries: solid versus liquid electrolyte[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20462-20468. |
37 | METZGER M, STREHLE B, SOLCHENBACH S, et al. Origin of H2 Evolution in LIBs: H2O reduction vs. electrolyte oxidation[J]. Journal of the Electrochemical Society, 2016, 163(5): A798-A809. |
38 | ROWDEN B, GARCIA-ARAEZ N. A review of gas evolution in lithium ion batteries[J]. Energy Reports, 2020, 6: 10-18. |
39 | TENG X, ZHAN C, BAI Y, et al. In situ analysis of gas generation in lithium-ion batteries with different carbonate-based electrolytes[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22751-22755. |
40 | SUN F, MARKÖTTER H, MANKE I, et al. Three-dimensional visualization of gas evolution and channel formation inside a lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 7156-7164. |
41 | KIM Y. Encapsulation of LiNi0.5Co0.2Mn0.3O2 with a thin inorganic electrolyte film to reduce gas evolution in the application of lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(17): 6400-6405. |
42 | KIM Y. Investigation of the gas evolution in lithium ion batteries: effect of free lithium compounds in cathode materials[J]. Journal of Solid State Electrochemistry, 2013, 17(7): 1961-1965. |
43 | FELL C R, SUN L Y, HALLAC P B, et al. Investigation of the gas generation in lithium titanate anode based lithium ion batteries[J]. Journal of the Electrochemical Society, 2015, 162(9): A1916-A1920. |
44 | WANG F M, CHENG H M, WU H C, et al. Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries[J]. Electrochimica Acta, 2009, 54(12): 3344-3351. |
45 | HAN Y K, MOON Y, LEE K, et al. Computational screening of lactam molecules as solid electrolyte interphase forming additives in lithium-ion batteries[J]. Current Applied Physics, 2014, 14(6): 897-900. |
46 | JANKOWSKI P, WIECZOREK W, JOHANSSON P. SEI-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches[J]. Journal of Molecular Modeling, 2017, 23(1): 6. |
47 | DENG B W, SUN D M, WAN Q, et al. Review of electrolyte additives for ternary cathode lithium-ion battery[J]. Acta Chimica Sinica, 2018, 76(4): 259. |
48 | MICHAN A L, PARIMALAM B S, LESKES M, et al. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chemistry of Materials, 2016, 28(22): 8149-8159. |
49 | BURNS J C, PETIBON R, NELSON K J, et al. Studies of the effect of varying vinylene carbonate (VC) content in lithium ion cells on cycling performance and cell impedance[J]. Journal of the Electrochemical Society, 2013, 160(10): A1668-A1674. |
50 | JUNG H M, PARK S H, JEON J, et al. Fluoropropane sultone as an SEI-forming additive that outperforms vinylene carbonate[J]. Journal of Materials Chemistry A, 2013, 1(38): 11975. |
51 | LEE Y, KIM S O, MUN J, et al. Influence of salt, solvents, and additives on the thermal stability of delithiated cathodes in lithium-ion batteries[J]. Journal of Electroanalytical Chemistry, 2017, 807: 174-180. |
52 | SCHRODER K, ALVARADO J, YERSAK T A, et al. The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes[J]. Chemistry of Materials, 2015, 27(16): 5531-5542. |
53 | PROFATILOVA I A, STOCK C, SCHMITZ A, et al. Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate[J]. Journal of Power Sources, 2013, 222: 140-149. |
54 | TAN T, LEE P K, YU D Y W. Improving thermal stability of Si-based anodes for lithium-ion batteries by controlling bulk and surface layer compositions[J]. Journal of the Electrochemical Society, 2021, 168(10): 100527. |
55 | HUANG S Q, CHEONG L Z, WANG D Y, et al. Thermal stability of solid electrolyte interphase of lithium-ion batteries[J]. Applied Surface Science, 2018, 454: 61-67. |
56 | XU K. Electrolytes and interphases in Li-ion batteries and beyond[J]. Chemical Reviews, 2014, 114(23): 11503-11618. |
57 | SANTNER H J, MÖLLER K C, IVANČO J, et al. Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups[J]. Journal of Power Sources, 2003, 119/120/121: 368-372. |
58 | KIM Y S, LEE H, SONG H K. Surface complex formation between aliphatic nitrile molecules and transition metal atoms for thermally stable lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8913-8920. |
59 | POHL B, GRÜNEBAUM M, DREWS M, et al. Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries[J]. Electrochimica Acta, 2015, 180: 795-800. |
60 | YANG Y P, HUANG A C, TANG Y, et al. Thermal stability analysis of lithium-ion battery electrolytes based on lithium bis(trifluoromethanesulfonyl)imide-lithium difluoro(oxalato)borate dual-salt[J]. Polymers, 2021, 13(5): 707. |
61 | SHAROVA V, MORETTI A, DIEMANT T, et al. Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries[J]. Journal of Power Sources, 2018, 375: 43-52. |
62 | WANG L, HE X M. Nonflammable pseudoconcentrated electrolytes for batteries[J]. Current Opinion in Electrochemistry, 2021, 30: 100783. |
63 | 李贺, 孔令丽, 张莹莹, 等. 锂离子电池电解液阻燃添加剂的研究进展[J]. 电源技术, 2009, 33(9): 819-821. |
LI He, KONG Lingli, ZHANG Yingying, et al. Research progress of flame retardant additives in electrolytes for Li-ion batteries[J]. Chinese Journal of Power Sources, 2009, 33(9): 819-821. | |
64 | 李军, 唐盛贺, 黄际伟, 等. 高安全性锂离子电池电解质研究进展[J]. 化工新型材料, 2012, 40(10): 6-8. |
LI Jun, TANG Shenghe, HUANG Jiwei, et al. Research progress in highly safe electrolyte systems for li-ion battery[J]. New Chemical Materials, 2012, 40(10): 6-8. | |
65 | LIU K, LIU Y Y, LIN D C, et al. Materials for lithium-ion battery safety[J]. Science Advances, 2018, 4(6): eaas9820. |
66 | HAREGEWOIN A M, WOTANGO A S, HWANG B J. Electrolyte additives for lithium ion battery electrodes: progress and perspectives[J]. Energy & Environmental Science, 2016, 9(6): 1955-1988. |
67 | WANG J H, YAMADA Y, SODEYAMA K, et al. Fire-extinguishing organic electrolytes for safe batteries[J]. Nature Energy, 2018, 3(1): 22-29. |
68 | YAO X L, XIE S, CHEN C H, et al. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries[J]. Journal of Power Sources, 2005, 144(1): 170-175. |
69 | NAKAGAWA H, OCHIDA M, DOMI Y, et al. Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester[J]. Journal of Power Sources, 2012, 212: 148-153. |
70 | SHIM E G, NAM T H, KIM J G, et al. Electrochemical performance of lithium-ion batteries with triphenylphosphate as a flame-retardant additive[J]. Journal of Power Sources, 2007, 172(2): 919-924. |
71 | DUNN R P, KAFLE J, KRAUSE F C, et al. Electrochemical analysis of Li-ion cells containing triphenyl phosphate[J]. Journal of the Electrochemical Society, 2012, 159(12): A2100-A2108. |
72 | CIOSEK HÖGSTRÖM K, LUNDGREN H, WILKEN S, et al. Impact of the flame retardant additive triphenyl phosphate (TPP) on the performance of graphite/LiFePO4 cells in high power applications[J]. Journal of Power Sources, 2014, 256: 430-439. |
73 | GAO D, XU J B, LIN M, et al. Ethylene ethyl phosphate as a multifunctional electrolyte additive for lithium-ion batteries[J]. RSC Advances, 2015, 5(23): 17566-17571. |
74 | XIANG H F, XU H Y, WANG Z Z, et al. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes[J]. Journal of Power Sources, 2007, 173(1): 562-564. |
75 | YUAN Y X, WU F, CHEN G H, et al. Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode[J]. Journal of Energy Chemistry, 2019, 37: 197-203. |
76 | DAGGER T, RAD B R, SCHAPPACHER F M, et al. Comparative performance evaluation of flame retardant additives for lithium ion batteries ( Ⅰ ): safety, chemical and electrochemical stabilities[J]. Energy Technology, 2018, 6(10): 2011-2022. |
77 | DAGGER T, NIEHOFF P, LÜRENBAUM C, et al. Comparative performance evaluation of flame retardant additives for lithium ion batteries (Ⅱ): full cell cycling and postmortem analyses[J]. Energy Technology, 2018, 6(10): 2023-2035. |
78 | ZENG Z Q, JIANG X Y, WU B B, et al. Bis(2,2,2-trifluoroethyl) methylphosphonate: an novel flame-retardant additive for safe lithium-ion battery[J]. Electrochimica Acta, 2014, 129: 300-304. |
79 | CHEN Z Q, CHAO Y F, LI W H, et al. Abuse-tolerant electrolytes for lithium-ion batteries[J]. Advanced Science, 2021, 8(11): e2003694. |
80 | HU J L, JIN Z X, ZHONG H, et al. A new phosphonamidate as flame retardant additive in electrolytes for lithium ion batteries[J]. Journal of Power Sources, 2012, 197: 297-300. |
81 | DAGGER T, MEIER V, HILDEBRAND S, et al. Safety performance of 5 A·h lithium ion battery cells containing the flame retardant electrolyte additive (phenoxy) pentafluorocyclotriphosphazene[J]. Energy Technology, 2018, 6(10): 2001-2010. |
82 | DAGGER T, GRÜTZKE M, REICHERT M, et al. Investigation of lithium ion battery electrolytes containing flame retardants in combination with the film forming electrolyte additives vinylene carbonate, vinyl ethylene carbonate and fluoroethylene carbonate[J]. Journal of Power Sources, 2017, 372: 276-285. |
83 | RECTENWALD M F, GAFFEN J R, RHEINGOLD A L, et al. Phosphoryl-rich flame-retardant ions (FRIONs): towards safer lithium-ion batteries[J]. Angewandte Chemie International Edition, 2014, 53(16): 4173-4176. |
84 | NARAYANAN S R, SURAMPUDI S, ATTIA A I, et al. Analysis of redox additive-based overcharge protection for rechargeable lithium batteries[J]. Journal of the Electrochemical Society, 1991, 138(8): 2224-2229. |
85 | WEN J W, YU Y, CHEN C H. A review on lithium-ion batteries safety issues: existing problems and possible solutions[J]. Materials Express, 2012, 2(3): 197-212. |
86 | ATES M N, ALLEN C J, MUKERJEE S, et al. Electronic effects of substituents on redox shuttles for overcharge protection of Li-ion batteries[J]. Journal of the Electrochemical Society, 2012, 159(7): A1057-A1064. |
87 | GÉLINAS B, BIBIENNE T, DOLLÉ M, et al. Electrochemistry and transport properties of electrolytes modified with ferrocene redox-active ionic liquid additives[J]. Canadian Journal of Chemistry, 2020, 98(9): 554-563. |
88 | CHEN Z H, AMINE K. Capacity fade of Li1+ x Mn2– x O4-based lithium-ion cells[J]. Journal of the Electrochemical Society, 2006, 153(2): A316. |
89 | ZHANG J J, SHKROB I A, ASSARY R S, et al. An extremely durable redox shuttle additive for overcharge protection of lithium-ion batteries[J]. Materials Today Energy, 2019, 13: 308-311. |
90 | ZHANG L, ZHANG Z C, WU H M, et al. Novel redox shuttle additive for high-voltage cathode materials[J]. Energy & Environmental Science, 2011, 4(8): 2858. |
91 | ERGUN S L, ELLIOTT C F, KAUR A P, et al. Overcharge performance of 3,7-disubstituted N-ethylphenothiazine derivatives in lithium-ion batteries[J]. Chemical Communications, 2014, 50(40): 5339-5341. |
92 | KAUR A P, ERGUN S, ELLIOTT C F,et al. 3,7-Bis(trifluoromethyl)-N-ethylphenothiazine: a redox shuttle with extensive overcharge protection in lithium-ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(43): 18190-18193. |
93 | KAUR A P, CASSELMAN M D, ELLIOTT C F, et al. Overcharge protection of lithium-ion batteries above 4V with a perfluorinated phenothiazine derivative[J]. Journal of Materials Chemistry A, 2016, 4(15): 5410-5414. |
94 | 熊琳强, 张英杰, 董鹏, 等. 锂离子电池电解液防过充添加剂研究进展[J]. 化工进展, 2011, 30(6): 1198-1204. |
XIONG Linqiang, ZHANG Yingjie, DONG Peng, et al. Development of overcharge protection additives for lithium ion secondary battery[J]. Chemical Industry and Engineering Progress, 2011, 30(6): 1198-1204. | |
95 | 夏兰, 李素丽, 艾新平, 等. 锂离子电池的安全性技术[J]. 化学进展, 2011, 23(S1): 328-335. |
XIA Lan, LI Suli, AI Xinping, et al. Safety enhancing methods for Li-ion batteries[J]. Progress in Chemistry, 2011, 23(S1): 328-335. | |
96 | ZHANG Q Y, QIU C C, FU Y B, et al. Xylene as a new polymerizable additive for overcharge protection of lithium ion batteries[J]. Chinese Journal of Chemistry, 2009, 27(8): 1459-1463. |
97 | LEE H, LEE J H, AHN S, et al. Co-use of cyclohexyl benzene and biphenyl for overcharge protection of lithium-ion batteries[J]. Electrochemical and Solid-State Letters, 2006, 9(6): A307. |
98 | 曾彪, 刘素琴, 黄可龙, 等. 功能添加剂对锂离子电池的防过充电化学行为研究[J]. 化学学报, 2009, 67(24): 2815-2821. |
ZENG Biao, LIU Suqin, HUANG Kelong, et al. Electrochemical behavior of function additive for overcharge protection of Li-ion batteries[J]. Acta Chimica Sinica, 2009, 67(24): 2815-2821. |
[1] | XIANG Shuo, LU Peng, SHI Weinian, YANG Xin, HE Yan, ZHU Liye, KONG Xiangwei. Controllable and large-scale preparation of two-dimensional WS2 nanosheet and its tribological properties as lubricant additives in lithium grease [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4783-4790. |
[2] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[3] | QIAO Xu, ZHANG Zhuxiu. Consideration and exploration of the development path for inherent safety of chemical engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3319-3324. |
[4] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[5] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[6] | WANG Jiaxin, PAN Yong, XIONG Xinyi, WAN Xiaoyue, WANG Jianchao. Reaction process and hazards of dinitrotoluene preparation by one-step catalytic nitration of toluene [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3420-3430. |
[7] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[8] | YU Jie, ZHANG Wenlong. Development status and progress of lithium ion battery separator [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1760-1768. |
[9] | YAN Xingqing, DAI Xingtao, YU Jianliang, LI Yue, HAN Bing, HU Jun. Research progress of high-pressure hydrogen leakage and jet flow [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1118-1128. |
[10] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[11] | ZHANG Yixuan, HU Wei, LIU Mengyao, JU Jingge, ZHAO Yixia, KANG Weimin. Research progress of polymer electrolytes in zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1397-1410. |
[12] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[13] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
[14] | YANG Kailu, CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Research progress of preparation and modification of nanofiltration membrane for dye wastewater treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5470-5486. |
[15] | LIU Yanhui, ZHOU Mingfang, MA Ming, WANG Kai, TAN Tianwei. Recent advances on the bio-fixation of CO2 driven by renewable energy [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 1-15. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |