Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (12): 4343-4349.DOI: 10.16085/j.issn.1000-6613.2017-0322
Previous Articles Next Articles
WANG Min, CAO Rui, LIU Yansheng, XU Hong
Received:
2017-02-27
Revised:
2017-04-06
Online:
2017-12-05
Published:
2017-12-05
王敏, 曹睿, 刘艳升, 徐泓
通讯作者:
曹睿,副教授,研究方向为精馏工艺、设备开发及应用基础研究。
作者简介:
王敏(1991-)女,硕士研究生,研究方向为油水互溶度的研究。E-mail:1070539920@qq.com。
基金资助:
CLC Number:
WANG Min, CAO Rui, LIU Yansheng, XU Hong. Progress on prediction models of mutual solubility of hydrocarbon-water system[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4343-4349.
王敏, 曹睿, 刘艳升, 徐泓. 烃-水体系互溶度预测模型的研究进展[J]. 化工进展, 2017, 36(12): 4343-4349.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-0322
[1] PRAUSNITZ J M,LICHTENTNALER R N,AZEVEDO E G,et al.Molecular thermodynamics of fluid phase equilibria[M].5th ed. State of New Jersey:Prentice Hall,1999. [2] TSONOPOULOS C.Thermodynamic analysis of the mutual solubilities of normal alkanes and water[J].Fluid Phase Equilibria,1999,156:21-33. [3] ZHANG W,WILDER J W,SMITH D H.Interpretation of ethane hydrate equilibrium data for porous media involving hydrate-ice equilibria[J].AIChE J.,2002,48:2324-2331. [4] AVLONITIS D.An investigation of gas hydrates formation energetics[J].AIChE J.,2005,51:1258-1273. [5] POLAK J,LU B C Y.Mutual solubilities of hydrocarbons and water at 0 and 25℃[J].Chem.,1973,51(24):4018-4023. [6] 牟天成,JÜRGEN G.真实溶剂似导体屏蔽模型(COSMO-RS)[J]. 化学进展,2008,20(10):1487-1494. MU T C,JÜRGEN G.Conductor-like screening model for real solvents (COSMO-RS)[J]. Progress in Chemistry,2008,20(10):1487-1494. [7] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 2. Benzene with water and heavy water[J].Phys. Chem. Ref. Data,2005,34:477-552. [8] TSONOPOULOS C.Thermodynamic analysis of the mutual solubilities of hydrocarbons and water[J]. Fluid Phase Equilibria,2001,186:185-206. [9] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 1. C5 hydrocarbons with water[J].Phys. Chem. Ref. Data,2005,34:441-476. [10] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated.Part 3. C6H8-C6H12 hydrocarbons with water and heavy water[J].Phys. Chem. Ref. Data,2005,34:657-708. [11] MACZYNSKI A,SHAW D G,GORAL M,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 4. C6H14 hydrocarbons with water[J]. Phys. Chem. Ref. Data,2005,34:709-53. [12] MACZYNSKI A,SHAW D G,GORAL M,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 5. C7 hydrocarbons with water and heavy water[J].Phys. Chem. Ref. Data,2005,34:1399-487. [13] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 6. C8H8-C8H10 hydrocarbons with water[J].Phys. Chem. Ref. Data,2005,34:1489-553. [14] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater revised and updated. Part 7. C8H12-C8H18 hydrocarbons with water[J].Phys. Chem. Ref. Data,2005,34:2261-2298. [15] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 8. C9 hydrocarbons with water[J].Phys. Chem. Ref. Data,2005,34:2299-345. [16] MACZYNSKI A,SHAW D G,GORAL M,et al. IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 9. C10 hydrocarbons with water[J].Phys. Chem. Ref. Data,2006,35:93-151. [17] MACZYNSKI A,SHAW D G,GORAL M,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 10. C11 and C12 hydrocarbons with water[J].Phys. Chem. Ref. Data,2006,35:153-203. [18] SHAW DG,MACAYNSKI A,GORAL M,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 11. C13-C36 hydrocarbons with water[J].Phys. Chem. Ref. Data,2006,35:687-784. [19] SHAW D G,MACAYNSKI A,HEFTER G T,et al.IUPAC-NIST solubility data series. 81. Hydrocarbons with water and seawater-revised and updated. Part 12. C5-C26 hydrocarbons with seawater[J].Phys. Chem. Ref. Data,2006,35:785-838. [20] KABADI V N,DANNER R P.A modified Soave-Redlich-Kwong equation of state for water hydrocarbon phase equilibria[J].Ind. Eng. Chem. Process Des. Dev.,1985,24:537-541. [21] ECONOMOU I G,TSONOPOULOS C.Associating models and mixing rules in equations of state for water/hydrocarbon mixtures[J].Chem. Eng. Sci.,1997,52:511-525. [22] SHIN H Y,HARUKI M,YOO K P,et al.Phase behavior of water + hydrocarbon binary systems by using multi-fluid nonrandom lattice hydrogen bonding theory[J].Fluid Phase Equilibria,2001,189:49-61. [23] HARUKI M,IWAI Y,ARAI Y.Prediction of phase equilibria for the mixtures containing polar substances at high temperatures and pressures by group contribution equation of state[J].Fluid Phase Equilibria,2001,189:13-30. [24] HARUKI M,IWAI Y,NAGAO S,et al.Measurement and correlation of liquid-liquid equilibria for water + aromatic hydrocarbon binary systems at high temperatures and pressures[J].Chem. Eng. Data,2001,46:950-953. [25] 李进龙,何昌春,彭昌军,等.基于化学缔合统计理论的链状流体状态方程[J].中国科学(化学),2010(9):1198-1209. LI J L,HE C C,PENG C J,et al.A chain of fluid state equation based on the theory of chemical association statistics[J].Chinese Science(Chemistry),2010(9):1198-1209. [26] HEMPTINNE DE J C,MOUGIN P,BARREAU A,et al.Application to petroleum engineering of statistical thermodynamics-based equations of state[J].Oil & Gas Science and Technology-Rev. IFP,2006,61(3):363-386. [27] KONTOGEORGIS G M,MICHELSENM L,FOLAS G K,et al.Ten years with the CPA (cubic-plus-association) equation of state. part 1. Pure compounds and self-associating systems[J].Ind. Eng. Chem. Res.,2006,45:4855-4868. [28] KONTOGEORGIS G M,MICHELSEN M L,FOLAS G K,et al.Ten years with the CPA (cubic-plus-association) equation of state.part 2. Cross-associating and multicomponent systems[J].Ind. Eng. Chem. Res.,2006,45:4869-4878. [29] KRASKA T,GUBBINS K E. Phase equilibria calculations with a modified SAFT equation of state. 1. Pure alkanes,alkanols,and water[J].Ind. Eng. Chem. Res.,1996,35:4738-4746. [30] GROSS J,SADOWSJI G.. Application of the perturbed-chain SAFT equation of state to associating systems[J]. Ind. Eng. Chem. Res.,2002,41:5510-5515. [31] GRENNER A,SCHMELZER J,SOLMS N V,et al.Comparison of two association models (elliott-suresh-donohue and simplified PC-SAFT) for complex phase equilibria of hydrocarbon-water and amine-containing mixtures[J].Ind. Eng. Chem. Res.,2006,45:8170-8179. [32] KARAKATSANI E K,KONTOGEORGIS G M,ECONOMOU I G,et al.Evaluation of the truncated perturbed chain-polar statistical associating fluid theory for complex mixture fluid phase equilibria[J].Ind. Eng. Chem. Res.,2006,45:6063-6074. [33] KONTOGEORGIS G M,VOUTSAS E C,YAKOUMIS I V,et al.An equation of state for associating fluids[J].Ind. Eng. Chem. Res.,1996,35:4310-4318. [34] KONTOGEORGIS G M,YAKOUMIS I V,MEIJER H,et al. Multicomponent phase equilibrium calculations for water-methanol-alkane mixtures[J].Fluid Phase Equilibria,1999,158/159/160:201-209. [35] YAN W,GEORGIOS M,KONTOGEORGIS G M,et al.Application of the CPA equation of state to reservoir fluids in presence of water and polar chemicals[J].Fluid Phase Equilibria,2009,276:75-85. [36] OLIVEIRA M B,COUTINHO J A P,QUEIMADA A J.Mutual solubilities of hydrocarbons and water with the CPA EoS[J].Fluid Phase Equilibria,2007,258(1):58-66. [37] MEDEIROS M.Mutual solubilities of water and hydrocarbons from the cubic plus association equation of state:a new mixing rule for the correlation of observed minimum hydrocarbon solubilities[J]. Fluid Phase Equilibria,2014,368:5-13. [38] KABADI V N,DANNER R P,A modified Soave-Redlich-Kwong equation of state for water-hydrocarbon phase equilibria[J].Ind. Eng. Chem. Process Des. Dev.,1985,24:537-541. [39] FREDENSLUND A,GMEHLING J,RASMUSSEN P.Vapor-liquid equilibria using UNIFAC[R].Amsterdam:Elsevier,1977. [40] 刘洪勤,高崇侠,赵新亮.无限稀释活度系数的预测模型[J].高校化学工程学报,1996(1):9-16. LIU HQ,GAO C X,ZHAO X L.Prediction model of infinite dilution activity coefficient[J].Journal of Chemical Engineering,1996(1):9-16. [41] GMEHLING J,LI J D,SCHILLER M A.A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties[J].Ind. Eng. Chem. Res.,1993,32(1):178-193. [42] LARSEN B L,RASMUSSEN P,FREDENSLUND A.A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing[J].Ind. Eng. Chem. Res.,1987,26(11):2274-2286. [43] JAKOB A,GRENSEMANN H,LOHMANN J,et al.Further development of modified UNIFAC(Dortmund):revision and extension 5[J].Ind. Eng. Chem. Res.2006,45(23):7924-7933. [44] MAGNUSSEN T,RASMUSSEN P.UNIFAC parameter table for prediction of liquid-liquid equilibriums[J].Industrial & Engineering,1981,20(2):331-339. [45] SATYRO M A,SHAW J M,YARRANTON H W.A practical method for the estimation of oil and water mutual solubilities[J]. Fluid Phase Equilibria,2013,355:12-25. [46] LORIA H,HAY G,SATYRO M A.Thermodynamic modeling and process simulation through PIONA characterization[J]. Energy & Fuels,2013,27(6):3578-3584. [47] YARRANTON H W,SATYRO M A.Expanded fluid based viscosity correlation for hydrocarbons[J].Ind. Eng. Chem. Res.,2009,48(7):3640-3648. [48] POSSANI L F K,STAUDT P B,SOARES R D P.Prediction of water solubilities in hydrocarbons and oils using F-SAC coupled with SRK-EoS[J].Fluid Phase Equilibria,2016,427:394-405. [49] STAUDT P B,SOARES R D P. A self-consistent Gibbs excess mixing rule for cubic equations of state[J].Fluid Phase Equilibria,2012,334:76-88. [50] API Technical data book:petroleum refining[M].9th ed.Washington (DC):American Petroleum Institute,2013. [51] HEMPTINNE DE J C,LEDANOIS J M,MOUGIN P,et al.Select thermodynamic models for process simulation——A practical guide using a three steps methodology[M].Editions Technip,2012. [52] BRADY C J,CUNNINGHAM J R,WILSON G M. Water-hydrocarbon liquid-liquid-vapor equilibrium measurements to 530 F?[R]. Gas Processors Association Research Report,1982. [53] KLAMT A.Conductor-like screening model for real solvents:a new approach to the quantitative calculation of solvation phenomena[J]. The Journal of Physical Chemistry,1995,99(7):2224-2235. [54] KLAMT A.Refinement and parametrization of COSMO-RS[J].The Journal of Physical Chemistry A,1998,102(26):5074-5085. [55] KLAMT A,ECKERT F.COSMO-RS:a novel and efficient method for the a priori prediction of thermophysical data of liquids[J].Fluid Phase Equilibria,2000,172(1):43-72. [56] ECKERT F,KLAMT A.Fast solvent screening via quantum chemistry:COSMO-RS approach[J].AIChE Journal,2002,48(2):369-385. [57] KLAMT A.Prediction of the mutual solubilities of hydrocarbons and water with COSMO-RS[J].Fluid Phase Equilibria,2003,206:223-235. [58] FREIRE M G,CARVALHO P J,SANTOS L M N B F,et al.Solubility of water in fluorocarbons:experimental and COSMO-RS prediction results[J]. Journal of Chemical Thermodynamics,2010,42(2):213-219. [59] KAHLEN J,MASUCH K,LEONHARD K. Modelling cellulose solubilities in ionic liquids using COSMO-RS[J]. Green Chemistry,2010,12(12):2172-2181. [60] JAAPAR S Z S,IWAI Y,MORAD N A.Effect of co-solvent on the solubility of ginger bioactive compounds in water using COSMO-RS calculations[J].Applied Mechanics and Materials,2014(624):174-178. [61] JAAPAR S Z S,MORAD N A,IWAI Y.Solubilities prediction of ginger bioactive compounds in liquid phase of water by the COSMO-RS method[M]//Recent trends in physics of material science and technology,Springer Singapore,2015:337-352. [62] SCHRODER B,SANTOS L M N B F,MARRUCHO I M.Prediction of aqueous solubilities of solid carboxylic acids with COSMO-RS[J]. Fluid Phase Equilibria,2010(289):140-147. [63] VIDAL J.Thermodynamics-applications in chemical engineering and the petroleum industry[M].Paris:Editions Technip,2003. [64] SATYRO M A.The role of thermodynamic modeling consistency in process simulation[C]//8th World Congress of Chemical Engineering,Palais des Congres,Montreal,2009. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[3] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[4] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[5] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[6] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[7] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[8] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
[9] | ZHAO Jingbin, WANG Yanfu, WANG Tao, MA Weikai, WANG Chen. Vulnerability assessment of storage tanks based on Monte Carlo simulation and dynamic event tree [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2751-2759. |
[10] | LIU Guangping, LU Zhenneng, GONG Yulie. Dynamic response and disturbance optimization of high temperature heat pump steam systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1719-1727. |
[11] | SANG Wei, TANG Jianfeng, HUA Yihuai, CHEN Jie, SUN Peiyuan, XU Yifei. Effects of physical solvent and amine properties on the performance of biphasic solvent [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2151-2159. |
[12] | LI Yun, CUI Nan, XIONG Xingxing, HUANG Zhiyuan, WANG Dongliang, XU Dan, LI Jun, LI Zebing. Influence of rare earth element Er(Ⅲ) on performance of short-cut nitrification and its inhibition kinetics [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1659-1668. |
[13] | ZHAO Yi, YANG Zhen, WANG Jia, LI Jingwen, ZHENG Yu. Research progress on molecular dynamics simulation of self-healing behavior of asphalt binder [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 803-813. |
[14] | LIU Yulong, HU Nan, CHEN Xiangbiao, CHEN Sencai, ZENG Bingyong, DING Dexin. Circulating adsorption-desorption properties and kinetic analysis of uranium by strong basic anion resins [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5574-5583. |
[15] | QIU Mofan, JIANG Lin, LIU Rongzheng, LIU Bing, TANG Yaping, LIU Malin. Research progress of particle-scale model in chemical reaction numerical simulation of gas-solid fluidized bed [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5047-5058. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |