Chemical Industry and Engineering Progree ›› 2015, Vol. 34 ›› Issue (10): 3601-3608.DOI: 10.16085/j.issn.1000-6613.2015.10.013

Previous Articles     Next Articles

Progress in quantum dot-sensitized solar cells

MA Juan, SONG Fengdan, CHEN Hao, ZHOU Yunlu, QI Suitao, YANG Bolun   

  1. Department of Chemical Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
  • Received:2015-05-29 Revised:2015-06-13 Online:2015-10-05 Published:2015-10-05

量子点敏化太阳能电池研究进展

马娟, 宋凤丹, 陈昊, 周运禄, 齐随涛, 杨伯伦   

  1. 西安交通大学化工系, 陕西 西安 710049
  • 通讯作者: 齐随涛,副教授,从事化石能源及新能源转化过程的多相催化研究。E-mailsuitaoqi@mail.xjtu.edu.cn。
  • 作者简介:马娟(1990—),女,硕士研究生。E-mailj19904123.majuan@stu.xjtu.edu.cn。
  • 基金资助:

    陕西省自然科学基金研究计划重点项目(2015JZ004)。

Abstract: Quantum Dot-Sensitized Solar Cells (QDSSCs) have been drawing much more attention due to their high efficiency, tunable band gap, low cost and good stability. This paper reviews the latest research progress in QDSSCs, including the structure of QDSSCs, the basic working principle of QDSSCs, the synthesis methods of quantum dots(QDs), the limiting factor of conversion efficiency and the optimization methods. Two preparation methods of QDs are also summarized as in-situ synthesis and ex-situ synthesis. Meanwhile, the effects of the recombination of electrons and holes, defective structure of photoelectrode and deficient functions of electrolyte on the efficiency of QDSSCs are analyzed, and the future research of QDSSCs is also prospected. Measures to improve the efficiency of QDSSCs, including QDs modification, photoelectrode structure optimization, and the modification of the interface between QDs and photoelectrode, are pointed out.

Key words: quantum dots, photoelectrode, electrolyte, solar cells, conversion efficiency

摘要: 量子点敏化太阳能电池(quantum dot-sensitized solar cells,QDSSCs)由于其理论转化效率高(44%)、带隙可调、价格低廉和稳定性好等优点引起了广泛关注。本文就QDSSCs的结构组成、工作原理、量子点(quantum dots,QDs)的合成方法、限制效率的因素以及优化方法等进行了综述,总结了量子点的两种合成方法即原位沉淀法和非原位沉淀法。与此同时,分析了目前影响QDSSCs效率的主要因素,如电子-空穴对的复合、光阳极结构不完善、电解质性能不佳等,最后对如何提高QDSSCs光电转化效率的研究重点和方向进行了展望,指出可通过改性量子点敏化剂、优化光阳极半导体及改善量子点与半导体间的界面特性等方法提高转换效率。

关键词: 量子点, 光阳极, 电解质, 太阳能电池, 转化效率

CLC Number: 

京ICP备12046843号-2;京公网安备 11010102001994号
Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd