1 |
樊金璐, 宋梅. 中国煤炭清洁高效利用技术国际竞争力分析[J]. 中国能源, 2018, 40(2): 32-35.
|
|
FAN Jinlu, SONG Mei. Analysis on international competitiveness of China’s coal clean and efficient utilization technology[J]. Energy of China, 2018, 40(2): 32-35.
|
2 |
周冠文. 加压双流化床煤热解-半焦燃烧分级转化的实验及数值模拟[D]. 南京: 东南大学, 2019.
|
|
ZHOU Guanwen. Experimental and numerical study on characteristics of coal pyrolysis-semicoke combustion based pressurized grade conversion in a dual fluidized bed[D]. Nanjing: Southeast University, 2019.
|
3 |
陈一樊. 分级转化系统中热解半焦气化特性的研究[D]. 南京: 南京理工大学, 2017.
|
|
CHEN Yifan. The study of gasification characteristics of pyrolyzed coal char in staged conversion polygeneration system[D]. Nanjing: Nanjing University of Science and Technology, 2017.
|
4 |
张睿. 烟煤热解半焦气化特性的研究[D]. 杭州: 浙江大学, 2014.
|
|
ZHANG Rui. Gasification characteristics study of pyrolvzed bituminous coal char[D]. Hangzhou: Zhejiang University, 2014.
|
5 |
翟耀文. 干法熄焦技术及设备[J]. 通用机械, 2013(2): 56-60.
|
|
ZHAI Yaowen. Dry quenching technology and equipment[J]. General Machinery, 2013(2): 56-60.
|
6 |
陈很平. 干法熄焦的发展与新技术应用[J]. 化学工程与装备, 2020(5): 205-207.
|
|
CHEN Henping. Development and application of new technology of dry quenching coke[J]. Chemical Engineering & Equipment, 2020(5): 205-207.
|
7 |
WANG H, WU J J, ZHU X, et al. Energy-environment-economy evaluations of commercial scale systems for blast furnace slag treatment: dry slag granulation vs. water quenching[J]. Applied Energy, 2016, 171: 314-324.
|
8 |
LIU X, YUAN Z W. Life cycle environmental performance of by-product coke production in China[J]. Journal of Cleaner Production, 2016, 112: 1292-1301.
|
9 |
GORDEEVA I S, NECHEPORENKO E G. Development of a new scheme for the use of heat in the process of dry quenching coke in order to save energy[J]. IOP Conference Series: Materials Science and Engineering, 2020, 791:: 12010-12017.
|
10 |
BISIO G, RUBATTO G. Energy saving and some environment improvements in coke-oven plants[J]. Energy, 2000, 25(3): 247-265.
|
11 |
DANILIN E A. New development in the dry quenching of coke[J]. Coke and Chemistry, 2018, 61(12): 469-482.
|
12 |
GAO C K, GAO W G, SONG K H, et al. Comprehensive evaluation on energy-water saving effects in iron and steel industry[J]. Science of the Total Environment, 2019, 670: 346-360.
|
13 |
QIN S Y, CHANG S Y. Modeling, thermodynamic and techno-economic analysis of coke production process with waste heat recovery[J]. Energy, 2017, 141: 435-450.
|
14 |
GILYAZETDINOV R R, SUKHOV I Y, NECHAEV V V, et al. Energy-efficient dry quenching of coke[J]. Coke and Chemistry, 2015, 58(6): 229-231.
|
15 |
LIU C X, XIE Z H, SUN F R, et al. Exergy analysis and optimization of coking process[J]. Energy, 2017, 139: 694-705.
|
16 |
LIU Z C, FENG Y H, ZHANG X X, et al. Numerical and experimental study on coke size distribution in bell-type charging in the CDQ shaft[J]. Journal of University of Science and Technology Beijing, 2008, 15(3): 236-240.
|
17 |
SUN K, TSENG C T, SHAN-HILL WONG D, et al. Model predictive control for improving waste heat recovery in coke dry quenching processes[J]. Energy, 2015, 80: 275-283.
|