1 |
李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939.
|
|
LI Hanke, DANG Chengxiong, YANG Guangxing, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939.
|
2 |
赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255.
|
|
ZHAO Yongzhi, MENG Bo, CHEN Linxin, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255.
|
3 |
孟翔宇, 顾阿伦, 邬新国, 等. 2019年中国氢能政策、产业与科技发展热点回眸[J]. 科技导报, 2020, 38(3): 172-183.
|
|
MENG Xiangyu, GU Alun, WU Xinguo, et al. Review of China’s hydrogen industry policy and scientific and technological development hotspots in 2019[J]. Science & Technology Review, 2020, 38(3): 172-183.
|
4 |
BERSTAD D O, STANG J H, NEKSÅ P. Comparison criteria for large-scale hydrogen liquefaction processes[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1560-1568.
|
5 |
朱琴君, 祝俊宗. 国内液氢加氢站的发展与前景[J]. 煤气与热力, 2020, 40(7): 15-19, 45.
|
|
ZHU Qinjun, ZHU Junzong. Development and prospect of liquid hydrogen refueling stations in China[J]. Gas & Heat, 2020, 40(7): 15-19, 45.
|
6 |
HAMMAD A, DINCER I. Analysis and assessment of an advanced hydrogen liquefaction system[J]. International Journal of Hydrogen Energy, 2018, 43(2): 1139-1151.
|
7 |
吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析[J]. 低温与超导, 2019, 47(7): 11-18.
|
|
Cui LYU, WANG Jinzhen, ZHU Weiping, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology[J]. Cryogenics & Superconductivity, 2019, 47(7): 11-18.
|
8 |
CHANG H M, RYU K N, BAIK J H. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator[J]. Cryogenics, 2018, 91: 68-76.
|
9 |
YUKSEL Y E, OZTURK M, DINCER I. Analysis and assessment of a novel hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11429-11438.
|
10 |
TARIQUE A, DINCER I, ZAMFIRESCU C. Application of scroll expander in cryogenic process of hydrogen liquefaction[M]//Progress in Exergy, Energy, and the Environment. Berlin: Springer International Publishing, 2014.
|
11 |
KANOGLU M, YILMAZ C, ABUSOGLU A. Geothermal energy use in absorption precooling for Claude hydrogen liquefaction cycle[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11185-11200.
|
12 |
KRASAE-IN S, STANG J H, NEKSA P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533.
|
13 |
CHANG H M, KIM B H, CHOI B. Hydrogen liquefaction process with Brayton refrigeration cycle to utilize the cold energy of LNG[J]. Cryogenics, 2020, 108: 103093.
|
14 |
曹增辉. 液化天然气冷能利用方法的研究与展望[J]. 化工管理, 2020(16): 56-57.
|
|
CAO Zenghui. Method research and prospect of LNG cold energy utilization[J]. Chemical Enterprise Management, 2020(16): 56-57.
|
15 |
QYYUM M A, QADEER K, MINH L Q, et al. Nitrogen self-recuperation expansion-based process for offshore coproduction of liquefied natural gas, liquefied petroleum gas, and pentane plus[J]. Applied Energy, 2019, 235: 247-257.
|
16 |
殷靓, 巨永林. 氢液化流程设计和优化方法研究进展[J]. 制冷学报, 2020, 41(3): 1-10.
|
|
YIN Liang, JU Yonglin. Review on researches and developments of the design and optimization for hydrogen liquefaction processes[J]. Journal of Refrigeration, 2020, 41(3): 1-10.
|
17 |
ASADNIA M, MEHRPOOYA M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15564-15585.
|
18 |
ASLAMBAKHSH A H, MOOSAVIAN M A, AMIDPOUR M, et al. Global cost optimization of a mini-scale liquefied natural gas plant[J]. Energy, 2018, 148: 1191-1200.
|
19 |
MARMOLEJO-CORREA D, GUNDERSEN T. A comparison of exergy efficiency definitions with focus on low temperature processes[J]. Energy, 2012, 44(1): 477-489.
|
20 |
QYYUM M A, ALI W, LONG N V D, et al. Energy efficiency enhancement of a single mixed refrigerant LNG process using a novel hydraulic turbine[J]. Energy, 2018, 144: 968-976.
|
21 |
KOCHUNNI S K, CHOWDHURY K. Zero methane loss in reliquefaction of boil-off gas in liquefied natural gas carrier ships by using packed bed distillation in reverse Brayton system[J]. Journal of Cleaner Production, 2020, 260: 121037.
|
22 |
AASADNIA M, MEHRPOOYA M. Large-scale liquid hydrogen production methods and approaches: a review[J]. Applied Energy, 2018, 212: 57-83.
|
23 |
BRACHA M, LORENZ G, PATZELT A, et al. Large-scale hydrogen liquefaction in Germany[J]. International Journal of Hydrogen Energy, 1994, 19(1): 53-59.
|
24 |
殷靓, 巨永林, 王刚. 1,000 L/h氢液化装置工艺流程分析及优化[J]. 制冷技术, 2019, 39(1): 39-44.
|
|
YIN Liang, JU Yonglin, WANG Gang. Process analysis and optimization of 1000L/h hydrogen liquefaction system[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 39-44.
|