化工进展 ›› 2021, Vol. 40 ›› Issue (11): 5939-5948.DOI: 10.16085/j.issn.1000-6613.2020-2284
孟辉波1,2(), 刘振江1,2, 禹言芳1,2(), 张平1,2, 吴剑华1,2
收稿日期:
2020-11-15
修回日期:
2021-03-05
出版日期:
2021-11-05
发布日期:
2021-11-19
通讯作者:
禹言芳
作者简介:
孟辉波(1981—),男,博士,教授,研究方向为化工过程机械。E-mail:基金资助:
MENG Huibo1,2(), LIU Zhenjiang1,2, YU Yanfang1,2(), ZHANG Ping1,2, WU Jianhua1,2
Received:
2020-11-15
Revised:
2021-03-05
Online:
2021-11-05
Published:
2021-11-19
Contact:
YU Yanfang
摘要:
循环射流混合槽作为一种高效的混合装置在化工过程强化处理技术中具有潜在的工业应用前景。由于缺乏对其内多相体系流动和混合行为的研究,制约了循环射流混合反应器的优化设计与工业化应用。本文选取水和二甲基硅油两相体系,采用计算流体力学软件ANSYS Fluent V16.1中Eulerian-Eulerian多相流模型和SST k-?湍流模型,对两种不同加料方式下循环射流混合槽内液液两相射流中心线速度、离析强度、拉伸率等参数进行研究。研究结果表明:分散相浓度(αd)增大射流卷吸能耗增大,在l/s<0.4内αd=1.80%和2.86%量纲为1的射流中心线速度衰减趋势与αd=6.00%相比减弱51%和21%;在低分散相浓度时,量纲为1的射流中心线速度随Re的增大衰减趋势变化小,在l/s<0.24内Re=6346、9519和12692量纲为1的射流中心线速度衰减趋势与Re=3173相比分别减弱2.60%、2.87%和12.69%。离析强度随混合时间的增大而减小,随周向角度增大呈W形变化趋势。在相含率和雷诺数相同时,对称球状较圆柱状加料达到混合时间减少65.5%;不同喷嘴之间的拉伸率随迹线长度的增大而增大,jet1和jet9位置处的拉伸率与其余喷嘴相比较大;相同喷嘴之间拉伸率随Re的增大而增大,Re=6346、9519和12692的拉伸率与Re=3173相比分别提高289%~320%、418%~454%和607%~667%。
中图分类号:
孟辉波, 刘振江, 禹言芳, 张平, 吴剑华. 循环射流混合槽内液液两相混合特性数值模拟[J]. 化工进展, 2021, 40(11): 5939-5948.
MENG Huibo, LIU Zhenjiang, YU Yanfang, ZHANG Ping, WU Jianhua. Computational simulation of liquid-liquid two-phase mixing characteristics in the circulating jet tank[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5939-5948.
Patch方式 | 直径D或球心/mm | 高度或直径/mm | 相含率αd/% |
---|---|---|---|
柱状 | 400 | z=392.80~400.00 | 1.80 |
柱状 | 400 | z=388.56~400.00 | 2.86 |
柱状 | 400 | z=376.00~400.00 | 6.00 |
对称球状 | (92,0,300)(-92,0,300) (0,92,300)(0,-92,300) | dp=88.20 | 2.86 |
表1 Patch参数
Patch方式 | 直径D或球心/mm | 高度或直径/mm | 相含率αd/% |
---|---|---|---|
柱状 | 400 | z=392.80~400.00 | 1.80 |
柱状 | 400 | z=388.56~400.00 | 2.86 |
柱状 | 400 | z=376.00~400.00 | 6.00 |
对称球状 | (92,0,300)(-92,0,300) (0,92,300)(0,-92,300) | dp=88.20 | 2.86 |
1 | NIE A, GAO Z M, XUE L, et al. Micromixing performance and the modeling of a confined impinging jet reactor/high speed disperser[J]. Chemical Engineering Science, 2018, 184: 14-24. |
2 | LIU Y Y, YUE J, XU C, et al. Hydrodynamics and local mass transfer characterization under gas-liquid-liquid slug flow in a rectangular microchannel[J]. AIChE Journal, 2020, 66(2): e16805. |
3 | HUANG F L, WANG D F, LI Z P, et al. Mixing process of two miscible fluids in a lid-driven cavity[J]. Chemical Engineering Journal, 2019, 362: 229-242. |
4 | 房鼎业. 跨世纪的化学工程[J]. 化工生产与技术, 2000, 7(1): 5-11. |
FANG Dingye. Chemical engineering: past, present and future[J]. Chemical Production and Technology, 2000, 7(1): 5-11. | |
5 | 杨超, 毛在砂. 多相反应器的设计、放大和过程强化[M]. 北京: 化学工业出版社, 2020. |
YANG Chao, MAO Zaisha. Multiphase reactor design, scale-up and process enhancement[M]. Beijing: Chemical Industry Press, 2020. | |
6 | GAO Z M, LI D Y, BUFFO A, et al. Simulation of droplet breakage in turbulent liquid-liquid dispersions with CFD-PBM: comparison of breakage kernels[J]. Chemical Engineering Science, 2016, 142: 277-288. |
7 | 刘作华, 王闯, 孙伟, 等. 弹性搅拌桨强化液-液两相混沌混合及液滴分散特性的研究[J]. 化工学报, 2020, 71(10): 4611-4620. |
LIU Zuohua, WANG Chuang, SUN Wei, et al. Chaotic mixing and droplet dispersion characteristics of liquid-liquid with elastic combined impeller[J]. CIESC Journal, 2020, 71(10): 4611-4620. | |
8 | STANKIEWICZ A. Process intensification in in-line monolithic reactor[J]. Chemical Engineering Science, 2001, 56(2): 359-364. |
9 | 廖启江, 秦宏云, 周鸣亮, 等. 高剪切混合器研究与应用进展[J]. 化工进展, 2019, 38(3): 1160-1175. |
LIAO Qijiang, QIN Hongyun, ZHOU Mingliang, et al. Progress of researches and applications for high shear mixers[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1160-1175. | |
10 | 初广文, 邹海魁, 曾晓飞, 等. 超重力反应强化技术及工业应用[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 33-39. |
CHU Guangwen, ZOU Haikui, ZENG Xiaofei, et al. High-gravity reaction process intensification and its industrial applications[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 33-39. | |
11 | 刘有智. 超重力撞击流-旋转填料床液-液接触过程强化技术的研究进展[J]. 化工进展, 2009, 28(7): 1101-1108. |
LIU Youzhi. Research progress of high gravity technology of IS-RPB to intensify liquid-liquid contact[J]. Chemical Industry and Engineering Progress, 2009, 28(7): 1101-1108. | |
12 | 李友凤, 叶红齐, 韩凯, 等. 混合过程强化及其设备的研究进展[J]. 化工进展, 2010, 29(4): 593-599, 605. |
LI Youfeng, YE Hongqi, HAN Kai, et al. Progress in intensification for mixing process and equipment[J]. Chemical Industry and Engineering Progress, 2010, 29(4): 593-599, 605. | |
13 | 吴剑华. 无搅拌混合装置: CN102228811A[P]. 2011-11-02. |
WU Jianhua. Stirring-free mixing device: CN102228811A[P]. 2011-11-02. | |
14 | MENG H B, WANG W, WU J H, et al. Experimental study on instantaneous pressure fluctuation time series in the novel tank agitated by multiple horizontal jets[J]. Chemical Engineering Research and Design, 2012, 90(11): 1750-1764. |
15 | FOSSETT H, PROSSER L E. The application of free jets to the mixing of fluids in bulk[J]. Proceedings of the Institution of Mechanical Engineers, 1949, 160(1): 224-232. |
16 | ZUGHBI H D, RAKIB M A. Mixing in a fluid jet agitated tank: effects of jet angle and elevation and number of jets[J]. Chemical Engineering Science, 2004, 59(4): 829-842. |
17 | ZUGHBI H D, KHOKHAR Z H, SHARMA R N. Mixing in pipelines with side and opposed Tees[J]. Industrial & Engineering Chemistry Research, 2003, 42(21): 5333-5344. |
18 | ZUGHBI H D, AHMAD I. Mixing in liquid-jet-agitated tanks: effects of jet asymmetry[J]. Industrial & Engineering Chemistry Research, 2005, 44(4): 1052-1066. |
19 | 蔡会勇, 刘永红, 李婷, 等. 内循环厌氧反应器Fluent数值模拟与优化[J]. 化工进展, 2014, 33(12): 3210-3214. |
CAI Huiyong, LIU Yonghong, LI Ting, et al. Numerical simulation and optimization of internal circulation anaerobic reactor by Fluent software[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3210-3214. | |
20 | 杨璐明, 刘昊坤, 李伟锋, 等. 二维喷嘴内稠密气固射流稳定性实验[J]. 化工进展, 2020, 39(5): 1674-1681. |
YANG Luming, LIU Haokun, LI Weifeng, et al. Experimental on the stability of dense gas-solid jet in two-dimensional nozzle[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1674-1681. | |
21 | 钱锦远, 李晓娟, 吴赞, 等. 微通道内液-液两相流流型及传质的研究进展[J]. 化工进展, 2019, 38(4): 1624-1633. |
QIAN Jinyuan, LI Xiaojuan, WU Zan, et al. Research progress on flow regimes and mass transfer of liquid-liquid two-phase flow in microchannels[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1624-1633. | |
22 | 何磊, 苏毅, 揭涛, 等. 气液喷射器的结构设计与性能分析[J]. 化工进展, 2020, 39(4): 1245-1251. |
HE Lei, SU Yi, Tao JIE, et al. Structural design and performance analysis of gas-liquid ejector[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1245-1251. | |
23 | MI J, NATHAN G J, LUXTON R E. Centreline mixing characteristics of jets from nine differently shaped nozzles[J]. Experiments in Fluids, 2000, 28(1): 93-94. |
24 | MI J, NATHAN G J, NOBES D S. Mixing characteristics of axisymmetric free jets from a contoured nozzle, an orifice plate and a pipe[J]. Journal of Fluids Engineering, 2001, 123(4): 878-883. |
25 | AZAD M, QUINN W R, GROULX D. Mixing in turbulent free jets issuing from isosceles triangular orifices with different apex angles[J]. Experimental Thermal and Fluid Science, 2012, 39: 237-251. |
26 | QUINN W R, AZAD M, GROULX D. Mean streamwise centerline velocity decay and entrainment in triangular and circular jets[J]. AIAA Journal, 2012, 51(1): 70-79. |
27 | EAKARACH B, NATTAWAT J, APINAN N, et al. On the computational fluid dynamics (CFD) analysis of the effect of jet nozzle angle on mixing time for various liquid heights[J]. Scientific Research and Essays, 2016, 11(4): 42-56. |
28 | MENG H B, WANG W, YU Y F, et al. Investigation of the effect of outlet structures on the jet flow characteristics in the circulating jet tank[J]. International Journal of Chemical Reactor Engineering, 2014, 12(1): 35-45. |
29 | YU Y F, WU J H, MENG H B. Numerical simulation process aspects of the novel static circulating jet mixer[J]. The Canadian Journal of Chemical Engineering, 2011, 89(3): 460-468. |
30 | 禹言芳, 吴剑华, 孟辉波. 新型循环射流混合器湍流特性分析[J]. 过程工程学报, 2011, 11(1): 1-8. |
YU Yanfang, WU Jianhua, MENG Huibo. Turbulent characteristics of a novel circulating jet mixer[J]. The Chinese Journal of Process Engineering, 2011, 11(1): 1-8. | |
31 | 禹言芳, 吴剑华, 孟辉波. 循环射流混合槽内瞬态压力波动非线性标度特性[J]. 过程工程学报, 2012, 12(5): 728-734. |
YU Yanfang, WU Jianhua, MENG Huibo. Non-linearity of scaling law of instantaneous pressure fluctuation signals in a circulating jet tank[J]. The Chinese Journal of Process Engineering, 2012, 12(5): 728-734. | |
32 | 禹言芳, 李春晓, 孟辉波, 等. 不同形状喷嘴的射流流动与卷吸特性[J]. 过程工程学报, 2014, 14(4): 549-555. |
YU Yanfang, LI Chunxiao, MENG Huibo, et al. Flow and entrainment characteristics of jet from different shape nozzles[J]. The Chinese Journal of Process Engineering, 2014, 14(4): 549-555. | |
33 | HADDADI M M, HOSSEINI S H, RASHTCHIAN D, et al. CFD modeling of immiscible liquids turbulent dispersion in Kenics static mixers: focusing on droplet behavior[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 348-361. |
34 | ANSYS Fluent16.0Theory Guide[EB/OL]. . |
35 | ZHANG J, YUAN H, CHENG L, et al. Inverse estimation of the sand concentration for sand-oil flow in a horizontal pipeline based on the Eulerian-Eulerian model[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107877. |
36 | 王伟文, 周忠涛, 陈光辉, 等. 流态化过程模拟的研究进展[J]. 化工进展, 2011, 30(1): 58-65. |
WANG Weiwen, ZHOU Zhongtao, CHEN Guanghui, et al. Research and development of simulation for fluidization process[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 58-65. | |
37 | HOSSEINI S H, SHOJAEE S, AHMADI G, et al. Computational fluid dynamics studies of dry and wet pressure drops in structured packings[J]. Journal of Industrial and Engineering Chemistry, 2012, 18(4): 1465-1473. |
38 | PATWARDHAN A W. CFD modeling of jet mixed tanks[J]. Chemical Engineering Science, 2002, 57(8): 1307-1318. |
39 | YU Y F, JIANG X H, MENG H B, et al. Computational simulation of mixing performance in the circulating jet mixing tank[J]. International Journal of Chemical Reactor Engineering, 2016, 14(2): 621-636. |
40 | 孟辉波, 王艳芬, 禹言芳, 等. 射流混合设备内混合时间的研究进展[J]. 化工进展, 2012, 31(12): 2615-2625. |
MENG Huibo, WANG Yanfen, YU Yanfang, et al. Research progress of mixing time in jet mixing equipment[J]. Chemical Industry and Engineering Progress, 2012, 31(12): 2615-2625. | |
41 | ZUGHBI H D. Numerical simulation of mixing in a jet agitated horizontal cylindrical tank[J]. International Journal of Computational Fluid Dynamics, 2006, 20(2): 127-136. |
42 | AL-ATABI M. Design and assessment of a novel static mixer[J]. The Canadian Journal of Chemical Engineering, 2011, 89(3): 550-554. |
43 | HADDADI M M, HOSSEINI S H, RASHTCHIAN D, et al. Comparative analysis of different static mixers performance by CFD technique: an innovative mixer[J]. Chinese Journal of Chemical Engineering, 2020, 28(3): 672-684. |
44 | DANCKWERTS P V. Continuous flow systems: distribution of residence times[J]. Chemical Engineering Science, 1953, 2(1): 1-13. |
45 | DANCKWERTS P V. The definition and measurement of some characteristics of mixtures[J]. Applied Scientific Research: Section A, 1952, 3(4): 279-296. |
46 | 王宇良. LDPE釜式反应器混合特性研究[D]. 杭州: 浙江大学, 2014. |
WANG Yuliang. Investigation of mixing characteristics in LDPE autoclave reactor[D]. Hangzhou: Zhejiang University, 2014. | |
47 | OTTINO J M. The kinematics of mixing: stretching, chaos, and transport[M]. Cambridge: Cambridge University Press, 1989: 160. |
48 | MENG H B, WANG F, YU Y F, et al. A numerical study of mixing performance of high-viscosity fluid in novel static mixers with multitwisted leaves[J]. Industrial & Engineering Chemistry Research, 2014, 53(10): 4084-4095. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[3] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[4] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[5] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[6] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[7] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[8] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[9] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[10] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[11] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[12] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[13] | 修浩然, 王云刚, 白彦渊, 邹立, 刘阳. 准东煤/市政污泥混燃燃烧特性及灰熔融行为分析[J]. 化工进展, 2023, 42(6): 3242-3252. |
[14] | 王保文, 刘同庆, 张港, 李炜光, 林德顺, 王梦家, 马晶晶. CuFe2O4改性脱硫渣氧载体与褐煤的反应特性[J]. 化工进展, 2023, 42(6): 2884-2894. |
[15] | 袁守正, 陈啸, 蒋鸣, 余亚雄, 周强. 气固下行床中壁面对介尺度曳力的影响规律[J]. 化工进展, 2023, 42(5): 2272-2281. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |