化工进展 ›› 2021, Vol. 40 ›› Issue (S2): 340-347.DOI: 10.16085/j.issn.1000-6613.2021-1019
收稿日期:
2021-05-12
修回日期:
2021-05-18
出版日期:
2021-11-12
发布日期:
2021-11-12
通讯作者:
段庆华
作者简介:
毛瑞云(1996—),女,硕士研究生,研究方向为生物基润滑油基础油的开发。E-mail:基金资助:
Received:
2021-05-12
Revised:
2021-05-18
Online:
2021-11-12
Published:
2021-11-12
Contact:
DUAN Qinghua
摘要:
衍生于植物油和动物脂肪的生物质油是生物润滑油的重要原料。与矿物油相比,生物质油具有低毒性、高生物降解性、高润滑性和良好的黏温性等优点,但其含双键和甘油酯基导致低温流动性和氧化稳定性差。因此,生物质油不宜直接作为润滑油基础油使用。生物质油经环氧化改性增加了氧化稳定性,加强了对金属表面的吸附,提高了润滑性。但是,单纯进行环氧化改性,也会导致油品的黏温性和低温流动性变差。因此,需要对环氧生物质油进一步开环改性。对比选择性氢化、异构化等改性方法,环氧化-开环方法反应条件温和,分子设计空间大。本文总结了由环氧植物油通过开环醚构化、酰化合成生物基础油的现状和发展趋势, 重点阐述了环氧植物油及其衍生物环氧脂肪酸甲酯与有机醇、羧酸和酸酐合成润滑油的研究进展,分析了改性分子结构对润滑油性能的影响,讨论了合成生物润滑油研究中尚存的问题, 并认为优化改性工艺、开发绿色高效的催化剂是未来的发展方向。
中图分类号:
毛瑞云, 段庆华. 环氧生物质油在合成润滑油基础油的研究进展[J]. 化工进展, 2021, 40(S2): 340-347.
MAO Ruiyun, DUAN Qinghua. Research progress of epoxy bio-oil in synthetic lubricating base oil[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 340-347.
1 | FAVA F, GARDOSSI L, BRIGIDI P, et al. The bioeconomy in Italy and the new national strategy for a more competitive and sustainable country[J]. New Biotechnology, 2021, 61: 124-136. |
2 | BUDZIANOWSKI W M, NANTONGO I, BAMUTURA C, et al. Business models and innovativeness of potential renewable energy projects in Africa[J]. Renewable Energy, 2018, 123: 162-190. |
3 | LAINEZ M, GONZÁLEZ J M, AGUILAR A, et al. Spanish strategy on bioeconomy: towards a knowledge based sustainable innovation[J]. New Biotechnology, 2018, 40: 87-95. |
4 | CHAN C, TANG S W, MOHD N K, et al. Tribological behavior of biolubricant base stocks and additives[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 145-157. |
5 | PANCHAL T M, PATEL A, CHAUHAN D D, et al. A methodological review on bio-lubricants from vegetable oil based resources[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 65-70. |
6 | MCNUTT J, HE Q S. Development of biolubricants from vegetable oils via chemical modification[J]. Journal of Industrial and Engineering Chemistry, 2016, 36: 1-12. |
7 | FERNANDES K V, CAVALCANTI E D C, CIPOLATTI E P, et al. Enzymatic synthesis of biolubricants from by-product of soybean oil processing catalyzed by different biocatalysts of Candida rugosa lipase[J]. Catalysis Today, 2021, 362: 122-129. |
8 | HUSSEIN R Z K, ATTIA N K, FOUAD M K, et al. Experimental investigation and process simulation of biolubricant production from waste cooking oil[J]. Biomass and Bioenergy, 2021, 144: 105850. |
9 | 徐慧智, 仝秋红, 王毓民. 可生物降解润滑油基础油低温性能研究[J]. 润滑油, 2003(5): 59-62. |
XU H Z, TONG Q H, WANG Y M. Study on low temperature property of biodegradable lubricating base oils[J]. Lubricating Oil, 2003(5): 59-62. | |
10 | SHOMCHOAM B, YOOSUK B. Eco-friendly lubricant by partial hydrogenation of palm oil over Pd/γ-Al2O3 catalyst[J]. Industrial Crops and Products, 2014, 62: 395-399. |
11 | FERNÁNDEZ M B, SÁNCHEZ M J F, TONETTO G M, et al. Hydrogenation of sunflower oil over different palladium supported catalysts: activity and selectivity[J]. Chemical Engineering Journal, 2009, 155(3): 941-949. |
12 | NOHAIR B, ESPECEL C, LAFAYE G, et al. Palladium supported catalysts for the selective hydrogenation of sunflower oil[J]. Journal of Molecular Catalysis A: Chemical, 2005, 229(1-2): 117-126. |
13 | NGO H, LATONA R, SARKER M I, et al. A process to convert sunflower oil into a value added branched chain oil with unique properties[J]. Industrial Crops and Products, 2019, 139: 111457. |
14 | NGO H L, YEE W C, MCALOON A J, et al. Process and cost modeling of saturated branched-chain fatty acid isomer production[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12041-12045. |
15 | NGO H L, HOH E, FOGLIA T A. Improved synthesis and characterization of saturated branched-chain fatty acid isomers[J]. European Journal of Lipid Science and Technology, 2012, 114(2): 213-221. |
16 | PARENTE E J, MARQUES J P C, RIOS I C, et al. Production of biolubricants from soybean oil: studies for an integrated process with the current biodiesel industry[J]. Chemical Engineering Research and Design, 2021, 165: 456-466. |
17 | AFIFAH A N, SYAHRULLAIL S, WAN AZLEE N I, et al. Synthesis and tribological studies of epoxidized palm stearin methyl ester as a green lubricant[J]. Journal of Cleaner Production, 2021, 280: 124320. |
18 | NEGI P, SINGH Y, TIWARI K. A review on the production and characterization methods of bio-based lubricants[J]. Materials Today: Proceedings, 2021, 40: 10513-10517. |
19 | HAIDER A, SHAFIQUE A, NADEEM H U, et al. Nonedible oil[M]//Inamuddin. Green Sustainable Process for Chemical and Environmental Engineering and Science. New York: Elserier, 2021: 127-155. |
20 | RAMAN J K, ALVES C M, GNANSOUNOU E. A review on moringa tree and vetiver grass—potential biorefinery feedstocks[J]. Bioresource Technology, 2018, 249: 1044-1051. |
21 | SINGH Y, FAROOQ A, RAZA A, et al. Sustainability of a non-edible vegetable oil based bio-lubricant for automotive applications: a review[J]. Process Safety and Environmental Protection, 2017, 111: 701-713. |
22 | 陆交, 张耀, 段庆华, 等. 生物基润滑油基础油的结构创新与产业化进展[J]. 石油学报(石油加工), 2018, 34(2): 203-216. |
LU Jiao, ZHANG Yao, DUAN Qinghua, et al. Structure innovation and commercialization progress of bio-based lube base oil[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2018, 34(2):203-216. | |
23 | 王普照, 段庆华. 植物油制备可生物降解基础油的工艺现状及展望[J]. 石油商技, 2016, 34(6): 10-19. |
WANG Puzhao, DUAN Qinghua. Present situation and prospect of preparing biodegradable base oil from vegetable oil[J]. Petroleum Products Application Research, 2016, 34(6): 10-19. | |
24 | SILVA M S, FOLETTO E L, ALVES S M, et al. New hydraulic biolubricants based on passion fruit and moringa oils and their epoxy[J]. Industrial Crops and Products, 2015, 69: 362-370. |
25 | ZAINAL N A, ZULKIFLI N W M, GULZAR M, et al. A review on the chemistry, production, and technological potential of bio-based lubricants[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 80-102. |
26 | MANNEKOTE J K, KAILAS S V, VENKATESH K, et al. Environmentally friendly functional fluids from renewable and sustainable sources—a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1787-1801. |
27 | MUJTABA M A, CHO H MUK, MASJUKI H H, et al. Critical review on sesame seed oil and its methyl ester on cold flow and oxidation stability[J]. Energy Reports, 2020, 6: 40-54. |
28 | ATABANI A E, SILITONGA A S, ONG H C, et al. Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 211-245. |
29 | BOBADE S N, KHYADE V B. Detail study on the properties of pongamia pinnata (Karanja) for the production of biofuel[J]. Research Journal of Chemical Sciences, 2012, 7(2): 16-20. |
30 | KUMAR A, SHARMA S. Potential non-edible oil resources as biodiesel feedstock: an Indian perspective[J]. Renewable and Sustainable Energy Reviews, 2011, 15(4): 1791-1800. |
31 | BALAT M. Potential alternatives to edible oils for biodiesel production—A review of current work[J]. Energy Conversion and Management, 2011, 52(2): 1479-1492. |
32 | KRŽAN B, VIŽINTIN J. Tribological properties of an environmentally adopted universal tractor transmission oil based on vegetable oil[J]. Tribology International, 2003,36(11): 827-833. |
33 | RAVASIO N, ZACCHERIA F, GARGANO M, et al. Environmental friendly lubricants through selective hydrogenation of rapeseed oil over supported copper catalysts[J]. Applied Catalysis-A General, 2002, 233(1): 1-6. |
34 | VLČEK T, PETROVIĆ Z S. Optimization of the chemoenzymatic epoxidation of soybean oil[J]. Journal of the American Oil Chemists’ Society, 2006, 83(3): 247-252. |
35 | ORELLANA-COCA C, TÖRNVALL U, ADLERCREUTZ D, et al. Chemo-enzymatic epoxidation of oleic acid and methyl oleate in solvent-free medium[J]. Biocatalysis and Biotransformation, 2009, 23(6): 431-437. |
36 | TÖRNVALL U, ORELLANA-COCA C, HATTI-KAUL R, et al. Stability of immobilized Candida antarctica lipase B during chemo-enzymatic epoxidation of fatty acids[J]. Enzyme and Microbial Technology, 2007, 40(3): 447-451. |
37 | MESHRAM P D, PURI R G, PATIL H V. Epoxidation of wild safflower (Carthamus oxyacantha) oil with peroxy acid in presence of strongly acidic cation exchange resin IR-122 as catalyst[J]. International Journal of ChemTech Research, 2011, 3(3): 1152-1163. |
38 | SALIMON J, SALIH N, YOUSIF E. Biolubricants: raw materials, chemical modifications and environmental benefits[J]. European Journal of Lipid Science and Technology, 2010, 112(5): 519-530. |
39 | MADANKAR C S, DALAI A K, NAIK S N. Green synthesis of biolubricant base stock from canola oil[J]. Industrial Crops and Products, 2013, 44: 139-144. |
40 | SOMIDI A K R, SHARMA R V, DALAI A K. Synthesis of epoxidized canola oil using a sulfated-SnO2 catalyst[J]. Industrial & Engineering Chemistry Research, 2014, 53(49): 18668-18677. |
41 | SHARMA B K, DOLL K M, ERHAN S Z. Oxidation, friction reducing, and low temperature properties of epoxy fatty acid methyl esters[J]. Green Chemistry, 2007, 9(5): 469. |
42 | SALIMON J, SALIH N, YOUSIF E. Biolubricant basestocks from chemically modified ricinoleic acid[J]. Journal of King Saud University-Science, 2012, 24(1): 11-17. |
43 | SALIMON J, SALIH N, YOUSIF E. Triester derivatives of oleic acid: the effect of chemical structure on low temperature, thermo-oxidation and tribological properties[J]. Industrial Crops and Products, 2012, 38: 107-114. |
44 | SALIH N, SALIMON J, ABDULLAH B M, et al. Thermo-oxidation, friction-reducing and physicochemical properties of ricinoleic acid based-diester biolubricants[J]. Arabian Journal of Chemistry, 2017, 10: S2273-S2280. |
45 | SALIMON J, ABDULLAH B M, SALIH N. Optimization of the oxirane ring opening reaction in biolubricant base oil production[J]. Arabian Journal of Chemistry, 2016, 9: S1053-S1058. |
46 | SALIMON J, SALIH N, YOUSIF E. Improvement of pour point and oxidative stability of synthetic ester basestocks for biolubricant applications[J]. Arabian Journal of Chemistry, 2012, 5(2): 193-200. |
47 | LATHI P, MATTIASSON B. Green approach for the preparation of biodegradable lubricant base stock from epoxidized vegetable oil[J]. Applied Catalysis B: Environmental, 2007, 69(3/4): 207-212. |
48 | 万谦. 蓖麻油基低温润滑油基础油的研制及性能表征[D]. 武汉:华中科技大学, 2019. |
WAN Qian. Preparation of low-temperature castor oil-based luricant and its properties characterization[D]. Wuhan: Huazhong University of Science and Technology, 2019. | |
49 | HWANG H, ADHVARYU A, ERHAN S Z. Preparation and properties of lubricant basestocks from epoxidized soybean oil and 2-ethylhexanol[J]. Journal of the American Oil Chemists’ Society, 2003,80(8): 811-815. |
50 | HWANG H, ERHAN S Z. Synthetic lubricant basestocks from epoxidized soybean oil and Guerbet alcohols[J]. Industrial Crops and Products, 2006, 23(3): 311-317. |
51 | SHARMA R V, DALAI A K. Synthesis of bio-lubricant from epoxy canola oil using sulfated Ti-SBA-15 catalyst[J]. Applied Catalysis B: Environmental, 2013, 142/143: 604-614. |
52 | ERHAN S Z, SHARMA B K, LIU Z, et al. Lubricant base stock potential of chemically modified vegetable oils[J]. Journal of Agricultural and Food Chemistry, 2008, 56(19): 8919-8925. |
53 | TULASHIE S K, KOTOKA F. The potential of castor, palm kernel, and coconut oils as biolubricant base oil via chemical modification and formulation[J]. Thermal Science and Engineering Progress, 2020, 16: 100480. |
54 | BOUAID A, MARTÍNEZ M, ARACIL J. Biorefinery approach for coconut oil valorisation: a statistical study[J]. Bioresource Technology, 2010, 101(11): 4006-4012. |
55 | ABDUL KAPOR N Z, MANIAM G P, RAHIM M H A, et al. Palm fatty acid distillate as a potential source for biodiesel production—A review[J]. Journal of Cleaner Production, 2017, 143: 1-9. |
56 | WU S, CAI Z, NIU Y, et al. A renewable lipid source for biolubricant feedstock oil from housefly (Musca domestica) larva[J]. Renewable Energy, 2017, 113: 546-553. |
57 | HERNÁNDEZ-CRUZ M C, MEZA-GORDILLO R, TORRESTIANA-SÁNCHEZ B, et al. Chicken fat and biodiesel viscosity modification with additives for the formulation of biolubricants[J]. Fuel, 2017, 198: 42-48. |
58 | VALLE C P DO, RODRIGUES J S, FECHINE L M U D, et al. Chemical modification of Tilapia oil for biolubricant applications[J]. Journal of Cleaner Production, 2018, 191: 158-166. |
59 | ZHANG W, JI H, SONG Y, et al. Green preparation of branched biolubricant by chemically modifying waste cooking oil with lipase and ionic liquid[J]. Journal of Cleaner Production, 2020, 274: 122918. |
60 | KHODADADI M R, MALPARTIDA I, TSANG C, et al. Recent advances on the catalytic conversion of waste cooking oil[J]. Molecular Catalysis, 2020, 494: 111128. |
61 | MOSER B R, ERHAN S Z. Preparation and evaluation of a series of α-hydroxy ethers from 9,10-epoxystearates[J]. European Journal of Lipid Science and Technology, 2007, 109(3): 206-213. |
62 | MOSER B R, ERHAN S Z. πSynthesis and evaluation of a series of α-hydroxy ethers derived from isopropyl oleate[J]. Journal of the American Oil Chemists’ Society, 2006, 83(11): 959-963. |
63 | SMITH P C, NGOTHAI Y, NGUYEN Q D, et al. Alkoxylation of biodiesel and its impact on low-temperature properties[J]. Fuel (Guildford), 2009, 88(4): 605-612. |
64 | SMITH P C, NGOTHAI Y, NGUYEN Q D, et al. The addition of alkoxy side-chains to biodiesel and the impact on flow properties[J]. Fuel, 2010, 89(11): 3517-3522. |
65 | MUSHTAQ M, TAN I M, NADEEM M, et al. A convenient route for the alkoxylation of biodiesel and its influence on cold flow properties[J]. International Journal of Green Energy, 2014, 11(3): 267-279. |
66 | RIOS Í C, CORDEIRO J P, ARRUDA T B M G, et al. Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: an alternative for Brazil’s green market[J]. Industrial Crops and Products, 2020, 145: 112000. |
67 | DOLL K M, SHARMA B K, ERHAN S Z. Synthesis of branched methyl hydroxy stearates including an ester from bio-based levulinic acid[J]. Industrial & Engineering Chemistry Research, 2007, 46(11): 3513-3519. |
68 | MOSER B R, SHARMA B K, DOLL K M, et al. Diesters from oleic acid: synthesis, low temperature properties, and oxidation stability[J]. Journal of the American Oil Chemists’ Society, 2007, 84(7): 675-680. |
69 | KLEINOVA A, FODRAN P, BRNCALOVA L, et al. Substituted esters of stearic acid as potential lubricants[J]. Biomass and Bioenergy, 2008,32(4): 366-371. |
70 | SALIH N, SALIMON J, YOUSIF E. Synthetic biolubricant basestocks based on environmentally friendly raw materials[J]. Journal of King Saud University-Science, 2012, 24(3): 221-226. |
71 | SALIH N, SALIMON J, YOUSIF E. The physicochemical and tribological properties of oleic acid based triester biolubricants[J]. Industrial Crops and Products, 2011, 34(1): 1089-1096. |
72 | SALIMON J, SALIH N, YOUSIF E. Chemically modified biolubricant basestocks from epoxidized oleic acid: improved low temperature properties and oxidative stability[J]. Journal of Saudi Chemical Society, 2011, 15(3): 195-201. |
[1] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[2] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[3] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[4] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[5] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[6] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[7] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
[8] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[9] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[10] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[11] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[12] | 邢献军, 罗甜, 卜玉蒸, 马培勇. H3PO4活化核桃壳制备活性炭及在Cr(Ⅵ)吸附中的应用[J]. 化工进展, 2023, 42(3): 1527-1539. |
[13] | 郑云武, 裴涛, 李冬华, 王继大, 李继容, 郑志锋. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
[14] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
[15] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |