1 |
中国电力传媒集团有限公司. 中国能源大数据报告(2020)[R]. 北京: 中国电力传媒集团有限公司, 2020.
|
|
China Power Media Group Co., Ltd. China energy big data report (2020)[R]. Beijing: China Power Media Group Co., Ltd., 2020.
|
2 |
LEEUWEN C VAN, MULDER M. Power-to-gas in electricity markets dominated by renewables[J]. Applied Energy, 2018, 232: 258-272.
|
3 |
SCHIEBAHN S, GRUBE T, ROBINIUS M, et al. Power to gas: technological overview, systems analysis and economic assessment for a case study in Germany[J]. International Journal of Hydrogen Energy, 2015, 40(12): 4285-4294.
|
4 |
赵永志, 张鑫, 郑津洋, 等. 掺氢天然气管道输送安全技术[J]. 化工机械, 2016, 43(1): 1-7.
|
|
ZHAO Yongzhi, ZHANG Xin, ZHENG Jinyang, et al. Safety technology for pipeline transportation of hydrogen-natural gas mixtures[J]. Chemical Engineering & Machinery, 2016, 43(1): 1-7.
|
5 |
Union European. Using the existing natural gas system for hydrogen[R]. 2009. http://issuu.com/exergia/docs/naturahy-brochure?e=1774604/5468248.
|
6 |
KIPPERS M J, DeELAAT J C, HERMKENS R J M, et al. International gas research conference proceedings[C]. North Miami Beach: Curran Associates, Inc, 2011.
|
7 |
The Daily Fusion. Green hydrogen injected into natural gas system for the first time[EB/OL]. .
|
8 |
McPhy energy role in French power-to-gas GRHYD programme[J]. Fuel Cells Bulletin, 2014, 2014(2): 9-10.
|
9 |
HDTT Organization Members. Hydrogen delivery technical team roadmap[R]. 2017.
|
10 |
ISAAC T. HyDeploy: the UK’s first hydrogen blending deployment project[J]. Clean Energy, 2019, 3(2): 114-125.
|
11 |
Snam. Snam: per la prima volta in Europa fornitura di idrogeno misto a gas naturale su rete di trasmissione a utenti industriali[EB/OL]. .
|
12 |
Jemena. NSW Government gives green light to Jemena’s hydrogen project[EB/OL]. .
|
13 |
NAGUMO M, TAKAI K. The predominant role of strain-induced vacancies in hydrogen embrittlement of steels: overview[J]. Acta Materialia, 2019, 165: 722-733.
|
14 |
NGUYEN T T, PARK J S, KIM W S, et al. Environment hydrogen embrittlement of pipeline steel X70 under various gas mixture conditions with in situ small punch tests[J]. Materials Science and Engineering A, 2020, 781: 139114.
|
15 |
NGUYEN T T, PARK J, KIM W S, et al. Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel[J]. International Journal of Hydrogen Energy, 2020, 45(3): 2368-2381.
|
16 |
KOMODA R, YAMADA K, KUBOTA M, et al. The inhibitory effect of carbon monoxide contained in hydrogen gas environment on hydrogen-accelerated fatigue crack growth and its loading frequency dependency[J]. International Journal of Hydrogen Energy, 2019, 44(54): 29007-29016.
|
17 |
WAN D, DENG Y, MELING J I H, et al. Hydrogen-enhanced fatigue crack growth in a single-edge notched tensile specimen under in situ hydrogen charging inside an environmental scanning electron microscope[J]. Acta Materialia, 2019, 170: 87-99.
|
18 |
SLIFKA A J, DREXLER E S, AMARO R L, et al. Measurements of fatigue crack growth rates of the heat-affected zones of welds of pipeline steels[C]//Proceedings of ASME 2015 Pressure Vessels and Piping Conference, July19-23, 2015, Boston, Massachusetts, USA. 2015
|
19 |
骆建武, 覃海涛. 高钢级管线钢断裂韧性确定方法研究[J]. 焊管, 2009, 32(7): 33-37.
|
|
LUO Jianwu, QIN Haitao. Research on the determination method of fracture toughness for high strength pipeline steel[J]. Welded Pipe and Tube, 2009, 32(7): 33-37.
|
20 |
ZHU Z X, HAN J, LI H J, et al. High temperature processed high Nb X80 steel with excellent heat-affected zone toughness[J]. Materials Letters, 2016, 163: 171-174.
|
21 |
XIE H, DU L X, HU J, et al. Effect of thermo-mechanical cycling on the microstructure and toughness in the weld CGHAZ of a novel high strength low carbon steel[J]. Materials Science and Engineering A, 2015, 639: 482-488.
|
22 |
MELAINA M W, ANTONIA O, PENEV M. Blending hydrogen into natural gas pipeline networks: a review of key issues[R]. Office of Scientific and Technical Information (OSTI), 2013.
|
23 |
蒙波. 含氢天然气高压输送管道材料性能劣化及失效后果研究[D]. 杭州: 浙江大学, 2016.
|
|
MENG Bo. Investigation on material property degradation and failure consequence of the high-pressure natural gas/hydrogen blends pipeline[D]. Hangzhou: Zhejiang University, 2016.
|
24 |
张一苇, 顾超华, 李炎华, 等. 煤制天然气中氢对X80钢螺旋焊管力学性能的影响[J]. 压力容器, 2020, 37(3): 1-8.
|
|
ZHANG Yiwei, GU Chaohua, LI Yanhua, et al. Effects of hydrogen in synthetic natural gas on mechanical properties of X80 steel spiral welded pipe[J]. Pressure Vessel Technology, 2020, 37(3): 1-8.
|
25 |
SHANG J, CHEN W F, ZHENG J Y, et al. Enhanced hydrogen embrittlement of low-carbon steel to natural gas/hydrogen mixtures[J]. Scripta Materialia, 2020, 189: 67-71.
|
26 |
ALTFELD K, PINCHBECK D. Admissible hydrogen concentrations in natural gas systems[J]. Gas for Energy, 2013(3): 1-16.
|
27 |
郑津洋, 马凯, 周伟明, 等. 加氢站用高压储氢容器[J]. 压力容器, 2018, 35(9): 35-42, 54.
|
|
ZHENG Jinyang, MA Kai, ZHOU Weiming, et al. High-pressure gaseous hydrogen storage vessel for hydrogen refueling station[J]. Pressure Vessel Technology, 2018, 35(9): 35-42, 54.
|
28 |
REITENBACH V, GANZER L, ALBRECHT D, et al. Influence of added hydrogen on underground gas storage: a review of key issues[J]. Environmental Earth Sciences, 2015, 73(11): 6927-6937.
|
29 |
严铭卿, 宓亢琪, 黎光华, 等. 天然气输配技术[M]. 北京: 化学工业出版社, 2006.
|
|
YAN Mingqing, MI Kangqi, LI Guanghua, et al. Natural gas transmission and distribution technology[M]. Beijing: Chemical Industry Press, 2006.
|
30 |
HAESELDONCKX D, D’HAESELEER W. The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure[J]. International Journal of Hydrogen Energy, 2007, 32(10/11): 1381-1386.
|
31 |
KARIM G A, WIERZBA I, AL-ALOUSI Y. Methane-hydrogen mixtures as fuels[J]. International Journal of Hydrogen Energy, 1996, 21(7): 625-631.
|
32 |
黄明, 吴勇, 文习之, 等. 利用天然气管道掺混输送氢气的可行性分析[J]. 煤气与热力, 2013, 33(4): 39-42.
|
|
HUANG Ming, WU Yong, WEN Xizhi, et al. Feasibility analysis of hydrogen transport in natural gas pipeline[J]. Gas & Heat, 2013, 33(4): 39-42.
|
33 |
罗子萱, 徐华池, 袁满. 天然气掺混氢气在家用燃气具上燃烧的安全性及排放性能测试与评价[J]. 石油与天然气化工, 2019, 48(2): 50-56.
|
|
LUO Zixuan, XU Huachi, YUAN Man. Safety and emission performance test and evaluation of natural gas mixed with hydrogen combustion on domestic gas appliances[J]. Chemical Engineering of Oil & Gas, 2019, 48(2): 50-56.
|
34 |
乔伟艳, 张宁, 解东来. 天然气掺氢的混合工艺研究[J]. 煤气与热力, 2009, 29(8): 72-75.
|
|
QIAO Weiyan, ZHANG Ning, XIE Donglai. Study on mixing process of hydrogen enriched natural gas[J]. Gas & Heat, 2009, 29(8): 72-75.
|
35 |
刘自亮, 熊思江, 花争立, 等. 埋地输氢管道泄漏爆炸事故后果模拟分析[J]. 中国安全生产科学技术, 2019, 15(12): 94-100.
|
|
LIU Ziliang, XIONG Sijiang, HUA Zhengli, et al. Simulation analysis on leakage and explosion accident consequence of buried hydrogen pipeline[J]. Journal of Safety Science and Technology, 2019, 15(12): 94-100.
|
36 |
赵博鑫, 朱明, 彭莹, 等. 基于PHAST软件模拟氢气、天然气管道泄漏[J]. 石化技术, 2017, 24(5): 48-50.
|
|
ZHAO Boxin, ZHU Ming, PENG Ying, et al. Simulation of leakage from hydrogen and natural gas pipelines based on PHAST[J]. Petrochemical Industry Technology, 2017, 24(5): 48-50.
|
37 |
国家能源局. 中华人民共和国能源法(征求意见稿)[EB/OL]. (2020-04-10)[2020-10-10]. .
|
|
National Energy Administration. Energy law of the People’s Republic of China (Exposure draft) [EB/OL]. (2020-04-10)[2020-10-10]. .
|