化工进展 ›› 2020, Vol. 39 ›› Issue (S2): 8-18.DOI: 10.16085/j.issn.1000-6613.2020-0679
收稿日期:
2020-04-27
出版日期:
2020-11-20
发布日期:
2020-11-17
通讯作者:
卢金玲
作者简介:
王凯(1991—),男,博士,讲师,研究方向为多相流腐蚀动力学。E-mail:基金资助:
Kai WANG(), Cuihong NAN, Jinling LU()
Received:
2020-04-27
Online:
2020-11-20
Published:
2020-11-17
Contact:
Jinling LU
摘要:
在流动体系中,流场作用对腐蚀行为中的力学、离子传质以及界面反应等过程有着复杂的耦合影响,不同金属材料、不同溶液环境下流体流动发挥的作用也复杂多变,这些因素加剧了流动环境下的腐蚀机理研究的困难性。本文综述了流动腐蚀的研究现状,包括流动对腐蚀过程的影响机制、流动腐蚀研究的实验装置以及流动腐蚀中的关键影响因素,着重分析了流动通过改变腐蚀反应物/产物的质量传输速率对腐蚀反应动力学的影响机制,以及流动的剪切力作用对壁面产物膜的形成/破坏动力学过程的影响。提出了流动腐蚀在腐蚀界面演化与流场的交互作用、时空尺度跨度、流场-离子传质-界面反应的多场耦合联系以及不同流体力学参数匹配性等方面有待解决的问题,展望了流动腐蚀的发展方向。
中图分类号:
王凯, 南翠红, 卢金玲. 流体动力学过程在流动腐蚀行为中的作用机制[J]. 化工进展, 2020, 39(S2): 8-18.
Kai WANG, Cuihong NAN, Jinling LU. Mechanism of hydrodynamic process in flow corrosion behavior[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 8-18.
1 | 曲世元, 侯吉瑞, 崔铭伟, 等. 多相流动对X70钢腐蚀行为的影响[J]. 油气储运, 2016, 35(5): 536-541. |
QU Shiyuan, HOU Jirui, CUI Mingwei, et al. Corrosion of X70 steel under multi-phase flow[J]. Oil & Gas Storage and Transportation, 2016, 35(5): 536-541. | |
2 | 雍兴跃, 林玉珍. 流动腐蚀研究的新进展[J]. 腐蚀科学与防护技术, 2002, 14(1): 32-34. |
YONG Xingyue, LIN Yuzhen. Progress in study on flow-induced corrosion[J]. Corrosion Science and Protection Technology, 2002, 14(1): 32-34. | |
3 | BARMATOV E, HUGHE T, NAGL M. Efficiency of film-forming corrosion inhibitors in strong hydrochloric acid under laminar and turbulent flow conditions[J]. Corrosion Science, 2015, 92(3): 85-94. |
4 | WEI L, PANG X L, GAO K W. Effect of flow rate on localized corrosion of X70 steel in supercritical CO2 environments[J]. Corrosion Science, 2018, 136(5): 339-351. |
5 | AZMI M N. The effect of turbulent flow on corrosion of mild steel in high partial CO2 environments[D]. Ohio: The Russ College of Engineering and Technology of Ohio University, 2013. |
6 | HEITZ E. Chemo-mechanical effects of flow on corrosion[J]. Corrosion, 1991, 47(2): 135-145. |
7 | CHEN T Y, MOCCARI A, MACDONALD D D. The development of controlled hydrodynamic techniques for corrosion testing[J]. Corrosion, 1992, 48(3): 239-255. |
8 | NEISIC S, POSTLETHWAITE J, OLSEN S. An electrochemical model for prediction of corrosion of mild steel in aqueous carbon dioxide solutions[J]. Corrosion, 1996, 52(4): 280. |
9 | SCULLY J R. The influence of mass transport on electrochemical process[M]. New York: Marcel Dekker Inc, 2003: 151-175. |
10 | SILVERMAN D. The rotating cylinder electrode for examining velocity-sensitive corrosion—A review[J]. Corrosion, 2004, 60(11): 1003-1023. |
11 | TOBÓN A, DIAZ C M. VELAZQUEZ J,et al. Comparative study on rate of flow accelerated corrosion (FAC) of API 5L X-52-65-70 steels in a brine added with H2S at 60℃ by using a rotating cylinder electrode (RCE) [J]. International Journal of Electrochemical Science, 2014, 9(11): 6781-6792. |
12 | LI W, POTS B, BROWN B, et al. A direct measurement of wall shear stress in multiphase flow—Is it an important parameter in CO2 corrosion of carbon steel pipelines?[J]. Corrosion Science, 2016, 110(9): 35-45. |
13 | XIONG Y, BROWN B, KINSELLA B, et al. Atomic force microscopy study of the adsorption of surfactant corrosion inhibitor films[J]. Corrosion, 2014, 70(3): 247–260. |
14 | SERGIO A P, RICARDO G M, JUAN M F, DURAN R, et al. Effect of turbulent flow on the corrosion kinetics of X52 and X70 pipeline steels in H2S containing solutions[J]. Materials and Corrosion, 2004, 55(8), 586-593. |
15 | POULSON B, Advances in understanding hydrodynamic effects on corrosion[J]. Corrosion Science, 1993, 35(6): 655-661. |
16 | 周昊, 吉庆丰, 刘雯, 等. 油气田套管用钢两相流流动腐蚀研究[J]. 排灌机械工程学报, 2019, 38(6): 1-5. |
ZHOU Hao, JI Qingfeng, LIU Wen, et al. The research on flow corrosion of casing steel for oil and gas field in two-phase flow[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 38(6): 1-5. | |
17 | 郭浩, 李雪, 刘星飞, 等. 流速对球墨铸铁供水管道腐蚀行为的影响机理[J]. 材料保护, 2018, 51(9): 40-44. |
GUO Hao, LI Xue, LIU Xingfei, et al. Effect of water flow velocity on the corrosion mechanism of ductile iron pipes in water distribution system[J]. Materials Protection, 2018, 51(9): 40-44. | |
18 | 杨江, 高里阳. 高流速冲蚀下特种缓蚀剂研发[J]. 石油管材与仪器, 2018, 4(2): 36-39. |
YANG Jiang, GAO Liyang. Development of specialty corrosion inhibitor under high flow velocity erosion[J]. Petroleum Tubular Goods & Instruments, 2018, 4(2): 36-39. | |
19 | NESIC S, SOLVI G T, ENERHAUG J. Comparison of the rotating cylinder and pipe flow tests for flow-sensitive carbon dioxide corrosion[J]. Corrosion, 1995, 51(10): 773. |
20 | EFIRD K D, WRIGHT E J, BOROS J, et al. Experimental correlation of steel corrosion in pipe flow with jet impingement and rotating cylinder lab tests[J]. Corrosion, 1993, 49(12): 992-1003. |
21 | CHEN T Y, MOCCARI A A. Development of controlled hydrodynamic techniques for corrosion testing[J]. Corrosion, 1992, 48(3): 239-255. |
22 | DAYALAN E, JOHAR T. Hydrodynamic correlations between pipe flow and rotating cylinder electrode (RCE) for oilfield corrosion-some insights[C]// Corrosion1995. Orlando: NACE, 1995: 5788. |
23 | KANG D H, LEE H. Study of the correlation between pitting corrosion and the component ratio of the dual phase in duplex stainless steel welds[J]. Corrosion Science, 2013, 74(9): 396-407. |
24 | YANG F F, KANG H J, CHEN Z N, et al. Electrochemical corrosion mechanisms of nickel-aluminium bronze with different nickel contents using the rotating disc electrode[J]. Corrosion Science, 2019, 157(15): 438-449. |
25 | ZHENG J C, HU X J, PAN C, et al. Effects of inclusions on the resistance to pitting corrosion of S32205 duplex stainless steel[J]. Materials and Corrosion, 2017, 69(5): 572-579. |
26 | 李晓孟. 新型Cu-Ni-Al合金在人工海水中耐蚀性能研究[D]. 洛阳: 河南科技大学, 2017. |
LI Xiaomeng. Study on corrosion resistance of new Cu-Ni-Al alloy in artificial seawater[D]. Luoyang: Henan University of Science and Technology, 2017. | |
27 | 韩小康, 覃明, 李佳润, 等. 不锈钢在海水中的腐蚀行为研究进展[J]. 材料保护, 2017, 50(9): 75-81. |
HAN Xiaokang, QIN Ming, LI Jiarun, et al. Research progress on corrosion behavior of stainless steel in seawater[J]. Materials Protection, 2017, 50(9): 75-81. | |
28 | 唐晓, 王佳, 李焰. 海水流动对A3钢腐蚀速度的影响[J]. 海洋科学, 2005, 29(7): 26-29. |
TANG Xiao, WANG Jia, LI Yan. Effect of flow velocity of seawater on corrosion rate for A3 steel[J]. Marine Sciences, 2005, 29(7): 26-29. | |
29 | 任胜彬. 流速对X系列管线钢极化曲线及其阴极保护的影响[D]. 大连: 大连理工大学, 2015. |
REN Shengbin. The influence of flow's velocity on x-series pipeline steel's polarization curves and cathodic protection[D]. Dalian: Dalian University of Technology, 2015. | |
30 | MOHAMMED N A, SUHOR M, MOHAMED M, et al. Corrosion of carbon steel in high CO2 environment: flow effect[C]//Corrosion2011. Houston: NACE, 2011: 11242. |
31 | 刘雪琴. 模拟动态海水中高镁铝合金(5383)腐蚀行为及其机理研究[D]. 银川: 宁夏大学, 2017. |
LIU Xueqin. Study on corrosion behavior of high magnesium aluminum alloy and its mechanism in simulated flowing seawater[D]. Yinchuan: Ningxia university2017. | |
32 | 林中楠. 铁合金在流动海水中的腐蚀行为研究[D]. 大连: 大连理工大学, 2009. |
LIN Zhongnan. Research of corrosion behavior of ferroalloys in the flowing seawater[D]. Dalian: Dalian University of Technology, 2009. | |
33 | YI J Z, HU H X, WANG Z B, et al. Comparison of critical flow velocity for erosion-corrosion of six stainless steels in 3.5wt.% NaCl solution containing 2wt.% silica sand particles[J]. Wear, 2018, 416/417(15): 62-71. |
34 | ZHENG Y G, YU H, JIANG S L, et al. Effect of the sea mud on erosion-corrosion behaviors of carbon steel and low alloy steel in 2.4% NaCl solution[J]. Wear, 2008, 264(11-12): 1051-1058. |
35 | JIANG X, ZHENG Y G, KE W. Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution[J]. Corrosion Science, 2005, 47(11): 2636-2658. |
36 | ZHENG Z B, ZHENG Y G, SUN W H, et al. Erosion-corrosion of HVOF-sprayed Fe-based amorphous metallic coating under impingement by a sand-containing NaCl solution[J]. Corrosion Science, 2013, 76(11): 337-347. |
37 | WANG Z B, ZHENG Y G, YI J Z. The role of surface film on the critical flow velocity for erosion-corrosion of pure titanium[J]. Tribology International, 2019, 133(5): 67-72. |
38 | YI J Z, HU H X, WANG Z B, et al. On the critical flow velocity for erosion-corrosion in local eroded regions under liquid-solid jet impingement[J]. Wear, 2019, 422(15): 94-99. |
39 | WANG K, MA X B, WANG Y S, et al. Study on the time-dependent evolution of pitting corrosion in flowing environment[J]. Journal of the Electrochemical Society, 2017, 164(7): C453-C463. |
40 | 张昆.混输管道内腐蚀及影响因素分析[J]. 油气田地面工程, 2008, 27(6): 32-33. |
ZHANG Kun. Analysis of internal corrosion of mixed transport pipeline and its influencing factors[J].Oil-Gasfield Surface Engineering, 2008, 27(6): 32-33. | |
41 | 刘晓田. 含二氧化碳段塞流管道腐蚀实验研究[D]. 东营: 中国石油大学(华东), 2014. |
LIU Xiaotian. Experimental study on pipeline corrosion of slug flow including carbon dioxide[D]. Dongying: China University of Petroleum, 2014. | |
42 | 张鲁飞. JZ20-2气田多相流动对油管腐蚀状况模拟研究[D]. 东营: 中国石油大学(华东), 2018. |
ZHANG Lufei. Simulation on the corrosion of tubing in multiphase flow of JZ20-2 gas field[D]. Dongying: China University of Petroleum, 2018. | |
43 | MARCO I, VAN B O. Polarization measurements from a rotating disc electrode for characterization of magnesium corrosion[J]. Corrosion Science, 2015, 102(1): 384-393. |
44 | AlMUHANNA K, HABIB K. Corrosion behavior of different alloys exposed to continuous flowing seawater by electrochemical impedance spectroscopy (EIS) [J]. Desalination, 2010, 250(1): 404-407. |
45 | MA A L, JIANG S L, ZHENG Y G, et al. Corrosion product film formed on the 90/10 copper-nickel tube in natural seawater: Composition/structure and formation mechanism[J]. Corrosion Science, 2015, 91(2): 245-261. |
46 | GIADA T, CLESI M, FRANCESCO D F, et al. Electronic properties and corrosion resistance of passive films on austenitic and duplex stainless steels[J]. Electrochimica Acta, 2018, 273(20): 412-423. |
47 | MOHAMMADI M, CHOUDHARY L, GADALA I, et al. Electrochemical and passive layer characterizations of 304L, 316L, and duplex 2205 stainless steels in thiosulfate gold leaching solutions[J]. Journal of the Electrochemical Society, 2016, 163(14): C883-C894. |
48 | KAROUI H, RIFFAULT B, JEANNIN M, et al. Electrochemical scaling of stainless steel in artificial seawater: Role of experimental conditions on CaCO3 and Mg(OH)2 formation[J]. Desalination, 2013, 311(15): 234–240. |
49 | HOSEINIEH S, SHAHRABI T, RAMEZANZADEH B, et al. The role of porosity and surface morphology of calcium carbonate deposits on the corrosion behavior of unprotected API 5L X52 rotating disk electrodes in artificial seawater[J]. Journal of the Electrochemical Society, 2016, 163(9): C515-C529. |
50 | ORNEK C, LANGBERG M, EVERTSSON J, et al. Influence of surface strain on passive film formation of duplex stainless steel and its degradation in corrosive environment[J]. Journal of the Electrochemical Society, 2019, 166(11): C3071-C3080. |
51 | CUI Z Y, CHEN S H, DOU Y P, et al. Passivation behavior and surface chemistry of 2507 super duplex stainless steel in artificial seawater: Influence of dissolved oxygen and PH[J]. Corrosion Science, 2019, 164(13): C856-C868. |
52 | OLVERE E, JUAN M F, JUAN G. CO2 corrosion control in steel pipelines. Influence of turbulent flow on the performance of corrosion inhibitors[J]. Journal of Loss Prevention in the Process Industries, 2015, 35(5): 19-28. |
53 | TOBON A, DIAZ C M, AGUILAR M, et al. Effect of flow rate on the corrosion products formed on traditional and new generation API 5L X70 in a sour brine environment[J]. International Journal of Electrochemical Science, 2015, 10(4): 2904-2920. |
54 | TAN Z W, ZHANG D L, YANG L Y, et al. Development mechanism of local corrosion pit in X80 pipeline steel under flow conditions[J]. Tribology International, 2019, 146(6): 106145. |
55 | 尹承军. B10合金在模拟海水中的冲刷腐蚀研究[D]. 哈尔滨: 哈尔滨工程大学, 2012. |
YIN Chengjun. Study on erosion and corrosion of B10 alloy in simulated seawater[D]. Harbin: Harbin Engineering University, 2012. | |
56 | TANG X, XU L Y, CHENG Y F. Electrochemical corrosion behavior X65 steel in the simulated oil-sand slurry. Ⅱ: Synergism of erosion and corrosion[J]. Corrosion Science, 2008, 50(5): 1469-1474. |
57 | ZHAO J, XIONG D, GU Y H, et al. A comparative study on the corrosion behaviors of X100 steel in simulated oilfield brines under the static and dynamic conditions[J]. Journal of Petroleum Science and Engineering, 2018, 173(2): 1109-1120. |
58 | ZHANG G A, CHENG Y F. Electrochemical corrosion of X65 pipe steel in oil/water emulsion[J]. Corrosion Science, 2009, 51(4): 901-907. |
59 | 华清. B30铜镍合金在人工海水中腐蚀产物膜的研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. |
HUA Qing. Studies on B30 copper nickel alloy corrosion product film in artificial seawater[D]. Harbin: Harbin Engineering University, 2014. | |
60 | 彭文才, 侯健, 郭为民, 等. 温度和溶解氧对5083铝合金海水腐蚀性的影响[J]. 装备环境工程, 2010, 7(3): 22-26. |
PENG Wencai, HOU Jian, GUO Weimin, et al. Effect of temperature and dissolved oxygen on corrosion performance of alloy 5083 in seawater[J]. Equipment Environmental Engineering, 2010, 7(3): 22-26. | |
61 | GAT N, TABAKOFF W. Effects of temperature on the behavior of metals under erosion by particulate matter[J]. Joumal of Testing and Evaluation, 1980, 8(7): 177-186 |
62 | 彭文山, 刘雪键, 刘少通, 等. 含砂流动海水中Q235钢冲刷腐蚀行为研究[J]. 表面技术, 2019, 48(9): 230-237. |
PENG Wenshan, LIU Xuejian, LIU Shaotong, et al. Erosion-corrosion behavior of Q235 steel in flowing seawater containing sand particles[J]. Surface Technology, 2019, 48(9): 230-237. | |
63 | 茅俊杰. 气液两相流管道冲刷腐蚀的研究[D]. 济南: 山东大学, 2012. |
MAO Junjie. Study on erosion-corrosion of pipeline in the gas-liquid two-phase flow[D]. Jinan: Shandong University, 2012. | |
64 | 李鹏.气液两相流动加速腐蚀的研究与CFD模拟[J]. 化工管理, 2014(2): 163-165. |
LI Peng. Study on gas/liquid two phase flow of flow-accelerated corrosion and simulation with CFD method[J]. Chemical Enterprise Management, 2014(2): 163-165. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[4] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[5] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[6] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[7] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[8] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[9] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[10] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[11] | 章凯, 金捍宇, 刘思宇, 王帅. 鼓泡流态化气泡间相互作用下相间传质过程的模拟[J]. 化工进展, 2023, 42(6): 2828-2835. |
[12] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[13] | 陈伟良, 高鑫, 李洪, 李鑫钢. 泡沫碳化硅波纹规整填料骨架结构对其传质性能的影响机理[J]. 化工进展, 2023, 42(5): 2289-2297. |
[14] | 李雪, 王艳君, 王玉超, 陶胜洋. 仿生表面用于雾水收集的最新研究进展[J]. 化工进展, 2023, 42(5): 2486-2503. |
[15] | 田启凯, 郑海萍, 张少斌, 张静, 余子夷. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |