化工进展 ›› 2021, Vol. 40 ›› Issue (7): 3878-3891.DOI: 10.16085/j.issn.1000-6613.2020-1617
徐众1,2,3(), 侯静1,2,3, 吴恩辉2,3, 李军2,3, 黄平2,3, 唐亚兰1
收稿日期:
2020-08-13
修回日期:
2020-09-30
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
徐众
作者简介:
徐众(1985—),男,硕士,讲师,从事太阳能技术集成及应用推广研究。E-mail:基金资助:
XU Zhong1,2,3(), HOU Jing1,2,3, WU Enhui2,3, LI Jun2,3, HUANG Ping2,3, TANG Yalan1
Received:
2020-08-13
Revised:
2020-09-30
Online:
2021-07-06
Published:
2021-07-19
Contact:
XU Zhong
摘要:
利用不同粒径活性炭(AC,粒径为75μm、48μm、45μm和38μm)作为支撑材料,以月桂酸(LA)、肉豆蔻酸(MA)、棕榈酸(PA)和硬脂酸(SA)4种脂肪酸(FA)为相变主料,采用熔融共混法制备多种AC/FA复合相变材料,并在其中添加石墨来增强材料导电性能,系统地研究了复合相变材料的密度、泄漏率、潜热、导热和导电性能。结果表明,FA中添加AC质量分数随粒径减小分别降低16%、12%、9%和7%,AC对MA的吸附效果最好,对SA的吸附效果最差;AC/FA泄漏率随AC添加量和成型压力增大而减小,密度正好相反。AC/FA的热导率比纯FA提高的最大倍数分别为7.6倍、10.7倍、5.1倍和5.1倍。AC/FA电阻率随压力和石墨添加量增加而减小,添加10%石墨后,复合相变材料潜热从52.88~141.9J/g下降至36.4~106.4J/g,但电阻率从几万降低至30.70Ω·cm以下,导电性能得到改善。
中图分类号:
徐众, 侯静, 吴恩辉, 李军, 黄平, 唐亚兰. 石墨对活性炭/脂肪酸复合相变材料潜热和导电性能的影响[J]. 化工进展, 2021, 40(7): 3878-3891.
XU Zhong, HOU Jing, WU Enhui, LI Jun, HUANG Ping, TANG Yalan. Effect of graphite on latent heat and conductivity of activated carbon/fatty acid composite phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3878-3891.
材料 | LA | MA | PA | SA |
---|---|---|---|---|
纯FA热导率/W·m-1·K-1 | 0.220[ | 0.17[ | 0.162[ | 0.338[ |
PCM热导率/W·m-1·K-1 | 添加59%粉煤灰0.52[ | 添加63%硅灰(0.32)[ | 45%硅藻土0.581[ | 添加24%AC 0.469[ |
表1 纯FA热导率情况
材料 | LA | MA | PA | SA |
---|---|---|---|---|
纯FA热导率/W·m-1·K-1 | 0.220[ | 0.17[ | 0.162[ | 0.338[ |
PCM热导率/W·m-1·K-1 | 添加59%粉煤灰0.52[ | 添加63%硅灰(0.32)[ | 45%硅藻土0.581[ | 添加24%AC 0.469[ |
材料 | 实验测试值 | 文献参考值 | ||||||
---|---|---|---|---|---|---|---|---|
H0m/J·g-1 | Trm/℃ | H0f/J·g-1 | Trf/℃ | H0m/J·g-1 | Trm/℃ | H0f/J·g-1 | Trf /℃ | |
LA | 196.2 | 46.7 | 185.1 | 39.7 | 169.6~222.3 | 43.4~47.4 | 172.5~185.3 | 41.0~42.5[ |
MA | 161.5 | 62.9 | 153.3 | 52.7 | 179.8~248.8 | 51.6~56.1 | 184.9~242.6 | 50.1~53.0[ |
PA | 224.8 | 65.9 | 220.8 | 57.4 | 183.4~275.4 | 61.1~64.9 | 176.8~284.2 | 59.3~60.9[ |
SA | 205.7 | 58.8 | 203.1 | 52.1 | 169.2~239.9 | 53.3~74.5 | 158.5~226.7 | 51.9~67.5[ |
表2 脂肪酸相变潜热
材料 | 实验测试值 | 文献参考值 | ||||||
---|---|---|---|---|---|---|---|---|
H0m/J·g-1 | Trm/℃ | H0f/J·g-1 | Trf/℃ | H0m/J·g-1 | Trm/℃ | H0f/J·g-1 | Trf /℃ | |
LA | 196.2 | 46.7 | 185.1 | 39.7 | 169.6~222.3 | 43.4~47.4 | 172.5~185.3 | 41.0~42.5[ |
MA | 161.5 | 62.9 | 153.3 | 52.7 | 179.8~248.8 | 51.6~56.1 | 184.9~242.6 | 50.1~53.0[ |
PA | 224.8 | 65.9 | 220.8 | 57.4 | 183.4~275.4 | 61.1~64.9 | 176.8~284.2 | 59.3~60.9[ |
SA | 205.7 | 58.8 | 203.1 | 52.1 | 169.2~239.9 | 53.3~74.5 | 158.5~226.7 | 51.9~67.5[ |
材料 | AC/LA | AC/LA/8%石墨 | AC/LA/10%石墨 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1m/J·g-1 | H1f/J·g-1 | E/% | ω0/% | ω1/% | H1m/J·g-1 | H1f/J·g-1 | E/% | ω0/% | ω1/% | H1m/J·g-1 | H1f/J·g-1 | E/% | ω0/% | ω1/% | |||
AC1 | 56.14 | 52.88 | 75.24 | 38 | 28.59 | 52.55 | 48.14 | 75.50 | 34.96 | 26.39 | 39.8 | 36.4 | 58.41 | 34.20 | 19.97 | ||
AC2 | 73.93 | 72.53 | 85.41 | 45 | 38.43 | 63.95 | 60.89 | 79.09 | 41.40 | 32.74 | 52.00 | 49.52 | 65.75 | 40.50 | 26.63 | ||
AC3 | 75.21 | 72.39 | 77.44 | 50 | 38.72 | 70.55 | 66.07 | 77.88 | 46.00 | 35.83 | 52.69 | 48.95 | 59.22 | 45.00 | 26.65 | ||
AC4 | 95.18 | 91.88 | 90.88 | 54 | 49.07 | 81.73 | 77.77 | 84.21 | 49.68 | 41.84 | 65.64 | 63.83 | 69.90 | 48.60 | 33.97 |
表3 AC/LA/石墨复合材料的相变潜热
材料 | AC/LA | AC/LA/8%石墨 | AC/LA/10%石墨 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H1m/J·g-1 | H1f/J·g-1 | E/% | ω0/% | ω1/% | H1m/J·g-1 | H1f/J·g-1 | E/% | ω0/% | ω1/% | H1m/J·g-1 | H1f/J·g-1 | E/% | ω0/% | ω1/% | |||
AC1 | 56.14 | 52.88 | 75.24 | 38 | 28.59 | 52.55 | 48.14 | 75.50 | 34.96 | 26.39 | 39.8 | 36.4 | 58.41 | 34.20 | 19.97 | ||
AC2 | 73.93 | 72.53 | 85.41 | 45 | 38.43 | 63.95 | 60.89 | 79.09 | 41.40 | 32.74 | 52.00 | 49.52 | 65.75 | 40.50 | 26.63 | ||
AC3 | 75.21 | 72.39 | 77.44 | 50 | 38.72 | 70.55 | 66.07 | 77.88 | 46.00 | 35.83 | 52.69 | 48.95 | 59.22 | 45.00 | 26.65 | ||
AC4 | 95.18 | 91.88 | 90.88 | 54 | 49.07 | 81.73 | 77.77 | 84.21 | 49.68 | 41.84 | 65.64 | 63.83 | 69.90 | 48.60 | 33.97 |
材料 | AC/MA | AC/MA/8%石墨 | AC/MA/10%石墨 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2m/J·g-1 | H2f/J·g-1 | H/J·g-1 | ω0/% | ω2/% | H2m/J·g-1 | H2f/J·g-1 | H/ J·g-1 | ω0/% | ω2/% | H2m/J·g-1 | H2f/J·g-1 | H/J·g-1 | ω0/% | ω2/% | |||
AC1 | 109.0 | 107.3 | 85.60 | 53 | 68.74 | 107.2 | 96.76 | 78.74 | 48.76 | 64.75 | 85.07 | 81.61 | 77.04 | 47.70 | 52.95 | ||
AC2 | 123.1 | 124.1 | 93.67 | 58 | 78.59 | 114.3 | 114.5 | 86.18 | 53.36 | 72.73 | 96.92 | 95.15 | 84.30 | 52.20 | 61.04 | ||
AC3 | 123.8 | 123.6 | 100.1 | 62 | 78.64 | 110.5 | 110.7 | 92.12 | 57.04 | 70.32 | 94.45 | 92.73 | 90.12 | 55.80 | 59.48 | ||
AC4 | 141.9 | 141.1 | 105.0 | 65 | 89.95 | 110.2 | 108.1 | 96.58 | 59.80 | 67.38 | 106.4 | 100.4 | 94.48 | 58.50 | 65.69 |
表4 AC/MA/石墨复合相变材料的潜热
材料 | AC/MA | AC/MA/8%石墨 | AC/MA/10%石墨 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H2m/J·g-1 | H2f/J·g-1 | H/J·g-1 | ω0/% | ω2/% | H2m/J·g-1 | H2f/J·g-1 | H/ J·g-1 | ω0/% | ω2/% | H2m/J·g-1 | H2f/J·g-1 | H/J·g-1 | ω0/% | ω2/% | |||
AC1 | 109.0 | 107.3 | 85.60 | 53 | 68.74 | 107.2 | 96.76 | 78.74 | 48.76 | 64.75 | 85.07 | 81.61 | 77.04 | 47.70 | 52.95 | ||
AC2 | 123.1 | 124.1 | 93.67 | 58 | 78.59 | 114.3 | 114.5 | 86.18 | 53.36 | 72.73 | 96.92 | 95.15 | 84.30 | 52.20 | 61.04 | ||
AC3 | 123.8 | 123.6 | 100.1 | 62 | 78.64 | 110.5 | 110.7 | 92.12 | 57.04 | 70.32 | 94.45 | 92.73 | 90.12 | 55.80 | 59.48 | ||
AC4 | 141.9 | 141.1 | 105.0 | 65 | 89.95 | 110.2 | 108.1 | 96.58 | 59.80 | 67.38 | 106.4 | 100.4 | 94.48 | 58.50 | 65.69 |
材料 | AC/PA | AC/PA/8%石墨 | AC/PA/10%石墨 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H3m/J·g-1 | H3f/J·g-1 | E/% | ω0/% | ω3/% | H3m/J·g-1 | H3f/J·g-1 | E/% | ω0/% | ω3/% | H3m/J·g-1 | H3f/J·g-1 | E/% | ω0/% | ω3/% | |||
AC1 | 64.39 | 63.06 | 67.22 | 43 | 28.60 | 53.21 | 51.54 | 60.37 | 39.56 | 23.51 | 48.41 | 46.71 | 56.15 | 38.70 | 21.34 | ||
AC2 | 83.92 | 80.72 | 81.89 | 46 | 36.94 | 65.55 | 62.35 | 69.53 | 42.32 | 28.70 | 59.80 | 59.01 | 64.84 | 41.40 | 26.66 | ||
AC3 | 85.40 | 82.92 | 79.86 | 48 | 37.77 | 66.47 | 65.03 | 67.56 | 44.16 | 29.51 | 70.27 | 68.99 | 73.01 | 43.20 | 31.25 | ||
AC4 | 99.10 | 96.30 | 85.54 | 52 | 43.85 | 78.59 | 76.75 | 73.74 | 47.84 | 34.86 | 76.14 | 68.91 | 73.03 | 46.80 | 32.54 |
表5 AC/PA/石墨复合相变材料的潜热
材料 | AC/PA | AC/PA/8%石墨 | AC/PA/10%石墨 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H3m/J·g-1 | H3f/J·g-1 | E/% | ω0/% | ω3/% | H3m/J·g-1 | H3f/J·g-1 | E/% | ω0/% | ω3/% | H3m/J·g-1 | H3f/J·g-1 | E/% | ω0/% | ω3/% | |||
AC1 | 64.39 | 63.06 | 67.22 | 43 | 28.60 | 53.21 | 51.54 | 60.37 | 39.56 | 23.51 | 48.41 | 46.71 | 56.15 | 38.70 | 21.34 | ||
AC2 | 83.92 | 80.72 | 81.89 | 46 | 36.94 | 65.55 | 62.35 | 69.53 | 42.32 | 28.70 | 59.80 | 59.01 | 64.84 | 41.40 | 26.66 | ||
AC3 | 85.40 | 82.92 | 79.86 | 48 | 37.77 | 66.47 | 65.03 | 67.56 | 44.16 | 29.51 | 70.27 | 68.99 | 73.01 | 43.20 | 31.25 | ||
AC4 | 99.10 | 96.30 | 85.54 | 52 | 43.85 | 78.59 | 76.75 | 73.74 | 47.84 | 34.86 | 76.14 | 68.91 | 73.03 | 46.80 | 32.54 |
材料 | AC/SA | AC/SA/8%石墨 | AC/SA/10%石墨 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H4m/J·g-1 | H4f/J·g-1 | E/% | ω0/% | ω4/% | H4m/J·g-1 | H4f/J·g-1 | E/% | ω0/% | ω4/% | H4m/J·g-1 | H4f/J·g-1 | E/% | ω0/% | ω4/% | |||
AC1 | 70.64 | 59.72 | 81.73 | 39 | 31.87 | 53.97 | 47.39 | 69.08 | 35.88 | 24.79 | 55.38 | 46.21 | 70.76 | 35.10 | 24.84 | ||
AC2 | 72.60 | 63.33 | 81.07 | 41 | 33.24 | 59.26 | 51.97 | 72.11 | 37.72 | 27.20 | 66.91 | 54.28 | 80.29 | 36.90 | 29.63 | ||
AC3 | 72.25 | 70.43 | 77.56 | 45 | 34.90 | 68.60 | 50.65 | 70.40 | 41.40 | 29.14 | 69.58 | 54.47 | 74.87 | 40.50 | 30.32 | ||
AC4 | 71.58 | 67.64 | 74.02 | 46 | 34.05 | 60.83 | 57.63 | 68.46 | 42.32 | 28.97 | 63.44 | 58.46 | 72.01 | 41.40 | 29.81 |
表6 AC/SA/石墨复合相变材料的潜热
材料 | AC/SA | AC/SA/8%石墨 | AC/SA/10%石墨 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H4m/J·g-1 | H4f/J·g-1 | E/% | ω0/% | ω4/% | H4m/J·g-1 | H4f/J·g-1 | E/% | ω0/% | ω4/% | H4m/J·g-1 | H4f/J·g-1 | E/% | ω0/% | ω4/% | |||
AC1 | 70.64 | 59.72 | 81.73 | 39 | 31.87 | 53.97 | 47.39 | 69.08 | 35.88 | 24.79 | 55.38 | 46.21 | 70.76 | 35.10 | 24.84 | ||
AC2 | 72.60 | 63.33 | 81.07 | 41 | 33.24 | 59.26 | 51.97 | 72.11 | 37.72 | 27.20 | 66.91 | 54.28 | 80.29 | 36.90 | 29.63 | ||
AC3 | 72.25 | 70.43 | 77.56 | 45 | 34.90 | 68.60 | 50.65 | 70.40 | 41.40 | 29.14 | 69.58 | 54.47 | 74.87 | 40.50 | 30.32 | ||
AC4 | 71.58 | 67.64 | 74.02 | 46 | 34.05 | 60.83 | 57.63 | 68.46 | 42.32 | 28.97 | 63.44 | 58.46 | 72.01 | 41.40 | 29.81 |
1 | 李昭, 李宝让, 陈豪志, 等.相变储热技术研究进展[J].化工进展, 2020, 39(12): 5066-5085. |
LI Zhao, LI Baorang, CHEN Haozhi, et al. State-of-the-art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085. | |
2 | 安钧洳, 王成君, 刘芳, 等.多孔材料在相变领域的研究进展[J].化工新型材料, 2020, 48(4): 5-9, 16. |
AN Junru, WANG Chengjun, LIU Fang, et al. Research progress of porous material in the field of phase transformation[J]. New Chemical Materials, 2020, 48(4): 5-9, 16. | |
3 | 土勋勋, 曹智杰, 袁萍, 等. HDPE/石蜡/活性炭三元相变储能材料的制备及热性能研究[J].塑料科技, 2015, 43(7): 67-69. |
TU Xunxun, CAO Zhijie, YUAN Ping, et al. Study on thermal properties of HDPE/paraffin/activated carbon phase change material and its preparation[J]. Plastics Science and Technology, 2015, 43(7): 67-69. | |
4 | 刘丽辉, 莫雅菁, 孙小琴, 等.纳米增强型复合相变材料的传热特性[J].储能科学与技术, 2020, 9(4): 1105-1112. |
LIU Lihui, MO Yajing, SUN Xiaoqin, et al. Thermal behavior of the nano enhanced phase change materials[J]. Energy Storage Science and Technology, 2020, 9(4): 1105-1112. | |
5 | QIU Feng, SONG Shaokun, LI Denian, et al. Experimental investigation on improvement of latent heat and thermal conductivity of shape-stable phase-change materials using modified fly ash[J]. Journal of Cleaner Production, 2020, 246(10):118952. |
6 | WU Shuying, MA Xinyao, PENG Deqi, et al. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(3): 2353-2361. |
7 | SARI Ahmet, Amir Al-AHMED, BICER Alper, et al. Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes[J]. Renewable Energy, 2019, 140(11): 779-788. |
8 | SUBRAMANIAN Arunachalam, APPUKTTAN Sreekumar. Sol-gel synthesis and characterization of microencapsulated strontium titanite-myristic acid phase change material for thermal energy storage[J]. Journal of Sol-Gel Science and Technology, 2020, 94(2): 573-581. |
9 | HU Zhanjiang, WANG Chaoming, JIA Wenbing, et al. Preparation and thermal properties of 1-hexadecanol-palmitic acid eutectic mixture/activated carbon composite phase change material for thermal energy storage[J]. Energy Technology & Environmental Science, 2019(4): 222-227. |
10 | JIA Wenbing, WANG Chaoming, WANG Tingjun, et al.Preparation and performances of palmitic acid/diatomite form-stable composite phase change materials[J]. Energy Research, 2020, 44(6): 4298-4308. |
11 | 吴韶飞, 闫霆, 蒯子函, 等.高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J].化工学报, 2019,70(9):3553-3564, 3207. |
WU Shaofei, YAN Ting, KUAI Zihan, et al. Preparation and thermal energy storage properties of high heat conduction expanded graphite/palmitic acid form-stable phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564, 3207. | |
12 | 王静静, 孙建林, 高鸿毅, 等. CNT@MOFs基复合相变材料的制备及性能[J].实验室研究与探索, 2019, 38(7): 12-15. |
WANG Jingjing, SUN Jianlin, GAO Hongyi, et al. Preparation and performance of composite phase change material using CNT@MOFs as the supporting material[J]. Research and Exploration in Laboratory, 2019, 38(7):12-15. | |
13 | 张显勇, 王忠, 付蕾, 等.支撑材料对中低温有机相变储能材料储热性能的影响研究[J].化工新型材料, 2017, 45(5): 54-56, 60. |
ZHANG Xianyong, WANG Zhong, FU Lei, et al. Study on the influence of supporting material on the thermal storage property of middle and low temperature organic phase change storage material[J]. New Chemical Materials, 2017, 45(5): 54-56, 60. | |
14 | 张显勇, 王忠, 付蕾, 等.有机复合相变储能材料的强化传热研究[J].陕西理工学院学报(自然科学版), 2017, 33(1): 6-10. |
ZHANG Xianyong, WANG Zhong, FU Lei, et al. Study on intensifying the thermal conductivity of organic composite phase change energy storage materials[J]. Journal of Shaanxi University of Technology (Natural Science Edition), 2017, 33 (1): 6-10. | |
15 | 付蕾, 王忠, 陈立贵, 等.利用TG研究中低温有机相变复合材料的耐热性[J].化工新型材料, 2017, 45(5): 170-172. |
FU Lei, WANG Zhong, CHEN Ligui, et al. Study on organic phase change heat-resistant composite material by TG at low temperature[J]. New Chemical Materials, 2017, 45(5): 170-172. | |
16 | ZHANG Xialan, LIN Qilang, LUO Huijun, et al. Three-dimensional graphitic hierarchical porous carbon/stearic acid composite as shape-stabilized phase change material for thermal energy storage[J]. Applied Energy, 2020, 260(4): 114278. |
17 | YANG Li, CAO Xiaoling, ZHANG Nan, et al. Thermal reliability of typical fatty acids as phase change materials based on 10000 accelerated thermal cycles[J]. Sustainable Cities and Society, 2019, 46(3): 101380. |
18 | 张圆圆, 杨建森.脂肪酸相变材料的封装制备及热工性质研究[J].材料导报, 2020, 34(16): 16144-16148. |
ZHANG Yuanyuan, YANG Jiansen. Study on packaging preparation and thermal properties of fatty acid phase change materials[J]. Materials Reports, 2020, 34(16): 16144-16148. | |
19 | 赖榕永, 王温馨, 谢雯倩, 等. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J].材料导报, 2019, 33(S1): 219-222. |
Lai Rongyong, WANG Wenxin, XIE Wenqian, et al. Preparation and properties of composite phase change energy storage material MA/PA/SA/modified fly ash[J]. Materials Reports, 2019, 33(S1): 219-222. | |
20 | 王委委, 宋肖飞, 蔡以兵, 等. 三元脂肪酸共晶物/二氧化硅定形相变复合材料的制备及其热性能[J].材料科学与工程学报, 2020, 38(1): 68-73. |
WANG Weiwei, SONG Xiaofei, CAI Yibing, et al. Fabrication and thermal properties of ternary fatty acid eutectic/SiO2 form-stable phase change composites[J]. Journal of Materials Science and Engineering, 2020, 38(1): 68-73. | |
21 | 常龙娇, 卢立新, 丘晓琳.脂肪酸定形相变材料的制备及性能表征[J].化工新型材料, 2017, 45(4): 76-78. |
CHANG Longjiao, LU Lixin, QIU Xiaolin. Preparation and characterization of shape-stabilized phase change material of fatty acid [J]. New Chemical Materials, 2017, 45(4):76-78. | |
22 | 闫全英, 张静, 刘莎.脂肪酸和石蜡复合相变材料导热系数的研究[J].新型建筑材料, 2018, 45(10): 68-71. |
YAN Quanying, ZHANG Jing, LIU Sha. Research on thermal conductivity of composite phase change material of fatty acid and paraffin[J]. New Building Materials, 2018, 45(10): 68-71. | |
23 | 周卫兵, 韦钧, 李康, 等. 掺月桂酸-硬脂酸/膨胀蛭石复合相变材料建筑砂浆的制备和性能表征[J].储能科学与技术, 2019, 8(1): 92-97. |
ZHOU Weibing, WEI Jun, LI Kang, et al. Preparation and characterization of building mortar with lauric acid-stearic acid/expanded vermiculite composite phase change material[J]. Energy Storage Science and Technology, 2019, 8(1): 92-97. | |
24 | JIANG Yuanyuan, ZHOU Changlin, LIU Zhimeng, et al. Facile preparation of calcium stearoyl lactylate as solid-liquid phase change materials with improved form stability and adjustable phase transition temperature for thermal comfort [J]. Environmental Progress & Sustainable Energy, 2019, 38(4): 1-10. |
25 | 王迎辉, 章学来, 纪珺, 等.正辛酸-肉豆蔻酸/膨胀石墨定形复合相变材料的制备和热物性[J].上海海事大学学报, 2019, 40(4): 105-110. |
WANG Yinhui, ZHANG Xuelai, JI Jun, et al. Preparation and thermophysical properties of octanoic acid-myristic acid/expanded graphite shape-stabilized composite phase-change material[J]. Journal of Shanghai Maritime University, 2019, 40(4): 105-110. | |
26 | SHEN Jianfen, HU Zhanjiang, WANG Chaoming, et al. Preparation and thermal properties of stearic acid/n-octadecane binary eutectic mixture as phase change materials for energy storage[J]. Energy Technology & Environmental Science, 2019, 14(4): 4125-4130. |
27 | ZHOU Dongyi, ZHOU Yuhong, YUAN Jiawei, et al. Palmitic acid-stearic acid/expanded graphite as form-stable composite phase- change material for latent heat thermal energy storage[J]. Journal of Nanomaterials, 2020. . |
28 | 付春芳, 袁野, 雷洪, 等.泡沫炭基储能传感复合材料的制备研究[J]. 功能材料, 2020, 51(4): 4001-4006, 4022. |
FU Chunfang, YUAN Ye, LEI Hong, et al. Preparation of carbonaceous foam based energy storage and sensing composite[J]. Journal of Functional Materials, 2020, 51(4): 4001-4006, 4022. | |
29 | 金鹏, 薛哲彬, 沈雷, 等.可调温材料在服装中的应用及性能测试评价[J].针织工业, 2020(4): 66-69. |
JIN Peng, XUE Zhebin, SHEN Lei, et al. Application of thermo-regulated materials in clothing and performance testing evaluation[J]. Knitting Industries, 2020(4): 66-69. | |
30 | 马菡婧, 田宝华, 何源.微胶囊相变材料的制备及在纺织品中的应用研究进展[J].化工新型材料, 2020, 48(4): 20-23. |
MA Hanjin, TIAN Baohua, HE Yuan. Research progress in preparation and textile application of MCPCM[J]. New Chemical Materials, 2020, 48(4): 20-23. | |
31 | GAO Ming, HUANG Juhua, LIU Ziqiang. The enhanced performance of phase-change materials via 3D printing with prickly aluminum honeycomb for thermal management of ternary lithium batteries[J]. Advances in Materials Science and Engineering, 2020. DOI: 10.1155/2020/8167386. |
32 | MA Chuyuan, ZHANG Ying, CHEN Xianfeng, et al. Experimental study of an enhanced phase change material of paraffin/expanded graphite /nano-metal particles for a personal cooling system[J]. Materials, 2020, 13(4): 980. |
33 | TANG Lisheng, ZHAO Xing, FENG Changping, et al. Bacterial cellulose/MXene hybrid aerogels for photo driven shape-stabilized composite phase change materials[J]. Solar Energy Materials and Solar Cells, 2019, 203(15): 11017. |
34 | XUE Fei, LU Yu, QI Xiaodong, et al. Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities[J]. Chemical Engineering Journal, 2019, 365(11): 20-29. |
35 | ZHU Xiao, HAN Liang, YANG Fei, et al. Lightweight mesoporous carbon fibers with interconnected graphitic walls for supports of form-stable phase change materials with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2020, 208(5):110361. |
36 | WEI Xiao, XUE Fei, QI Xiaodong, et al. Photo- and electro-responsive phase change materials based on highly anisotropic microcrystalline cellulose/graphene nanoplatelet structure[J]. Applied Energy, 2019, 236(3): 70-80. |
37 | HUANG Jinhui, ZHANG Buning, HE Ming, et al. Preparation of anisotropic reduced graphene oxide/ BN/paraffin composite phase change materials and investigation of their thermal properties[J]. Journal of Materials Science, 2020, 55(17): 7337-7350. |
38 | YIN Huibin, CAO Shiyuan, LIU Jian. Enhanced optical absorptive property and effective thermal storage capacity charging rate of phase change material based photo-thermal cells[J]. Solar Energy Materials and Solar Cells, 2019, 194(6): 252-258. |
39 | LI Chuanchang, ZHANG Bo, LIU Qingxia. N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage[J]. Journal of Energy Storage, 2020, 29(6): 101339. |
40 | YU Chengbin, YOUN Jae Ryoun, SONG Young Seok. Encapsulated phase change material embedded by graphene powders for smart and flexible thermal response[J]. Fibers and Polymers, 2019, 20(3): 545-554. |
41 | 董光能, 谢友柏, 虞烈, 等.相变可控的复合导电自润滑材料的加热特性[J].高分子材料科学与工程, 2002, 18(3): 125-128. |
DONG Guangneng, XIE Youbo, YU Lie, et al. Heating characteristics of self-lubricating conducting composites materials with controllable phase transformation[J]. Polymer Materials Science & Engineering, 2002, 18(3): 125-128. | |
42 | 张璐一.掺加相变材料和碳纤维材料的沥青混凝土路面融雪去冰效果研究[D].天津: 河北工业大学, 2015. |
ZHANG Luyi. The study on the effect of melting snow and ice by asphalt concrete pavement filled with phase-change material and carbon fiber material[D]. Tianjin: Hebei University of Technology, 2015. | |
43 | 任苗. 导电相变储热混凝土的制备及性能研究[D]. 哈尔滨:哈尔滨工业大学, 2018. |
REN Miao. Preparation and performance research of electrical conductive concrete incorporating phase change thermal storage aggregate[D]. Harbin: Harbin Institute of Technology, 2018. | |
44 | 赵宇轩. 静电纺丝法制备光电调温储能复合纤维与性能研究[D].北京: 北京石油化工学院, 2019. |
ZHAO Yuxuan. Performance and properties of photoelectric temperature-regulating energy-storage composite fiber prepared by electrospinning[D]. Beijing: Beijing Institute of Petrochemical Technology, 2019. | |
45 | 周昊, 李真一, 蔡青霖, 等.用于海水养殖的管壳式梯级相变蓄热装置内部传热特性的数值模拟研究[J].大连海洋大学学报, 2020, 35(4): 599-606. |
ZHOU Hao, LI Zhenyi, CAI Qinlin, et al. Numerical simulation of internal heat transfer characteristics in a shell and tube cascade phase change heat storage device used in maricultural[J]. Journal of Dalian Ocean University, 2020, 35(4): 599-606. | |
46 | LIU Peng, GU Xiaobin, BIAN Liang, et al. Capric acid/intercalated diatomite as form-stable composite phase change material for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(1): 359-368. |
47 | 蒋达华, 任如山, 石发恩, 等.月桂酸/活性炭复合相变储能材料的试验研究[J].广州化工, 2010, 38(5): 127-128. |
JIANG Dahua, REN Rushan, SHI Faen, et al. Study on composite of activated carbon and lauric acid for energy storage[J]. Guangzhou Chemical Industry and Technology, 2010, 38(5): 127-128. | |
48 | 徐众, 黄平, 吴恩辉, 等.膨胀石墨/石蜡复合相变材料的电阻率分析[J].储能科学与技术, 2019, 8(2): 371-378. |
XU Zhong, HUANG Ping, WU Enhui, et al. Analysis of electrical resistivity of expanded graphite/paraffin composite phase change material [J]. Energy Storage Science and Technology, 2019, 8(2): 371-378. | |
49 | 顾庆军, 费华, 王林雅, 等.脂肪酸相变储能材料热性能研究进展[J].化工进展, 2019, 38(6): 2825-2834. |
GU Qingjun, FEI Hua, WANG Linya, et al. Research progress on thermal properties of fatty acid phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2825-2834. |
[1] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[2] | 罗明昀, 凌子夜, 方晓明, 张正国. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607. |
[3] | 张文杰, 吴畏, 李松泽, 张子健, 衣雪梅. 温室用Na2SO4·10H2O-Na2HPO4·12H2O复合定形相变材料制备及性能[J]. 化工进展, 2022, 41(2): 920-929. |
[4] | 周涛涛, 熊志波, 吴志根, 李尚. 膨胀石墨/石蜡复合相变材料的导电及发热特性[J]. 化工进展, 2022, 41(2): 892-900. |
[5] | 杨晋, 殷勇高, 陈万河, 王静远, 陈九法. 硫酸钠水合盐相变蓄冷材料的制备及性能优化[J]. 化工进展, 2022, 41(11): 5977-5985. |
[6] | 禹兴海, 唐海慰, 李艳安, 韩玉琦, 闵雪梅. 一种光、电驱动的生物炭/硬脂酸复合相变材料的制备及其性能[J]. 化工进展, 2022, 41(11): 5936-5945. |
[7] | 尹少武, 康鹏, 韩嘉维, 张朝, 王立, 童莉葛. 基于相变材料的锂离子电池热管理性能[J]. 化工进展, 2022, 41(10): 5518-5529. |
[8] | 舒钊, 钟珂, 肖鑫, 贾洪伟, 吕凤勇, 常沙. 多孔纳米基复合相变材料在建筑节能中的应用进展[J]. 化工进展, 2021, 40(S2): 265-278. |
[9] | 马明琰, 翟玉玲, 轩梓灏, 周树光, 李志祥. 三元混合纳米流体稳定性及热性能[J]. 化工进展, 2021, 40(8): 4179-4186. |
[10] | 秦煜, 唐元鑫, 阮鹏臻, 王威娜, 陈斌. 碳纳米管水泥基复合材料压阻效应的多尺度研究进展[J]. 化工进展, 2021, 40(8): 4278-4289. |
[11] | 周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383. |
[12] | 于楠, 陈超, 蔺洁, 韩枫涛, 邹平, 贺祎鹏, 胡庆玲. 应用于太阳能相变蓄热PC构件升温养护建筑的复合相变材料热物性[J]. 化工进展, 2021, 40(1): 297-304. |
[13] | 徐众, 侯静, 李军, 吴恩辉, 黄平, 刘黔蜀, 胥大伟. 膨胀石墨/有机质复合相变材料的制备及性能[J]. 化工进展, 2020, 39(7): 2758-2767. |
[14] | 李肖华,杨自春,李昆锋,赵爽,费志方,张震. 以MTES为硅源制备透明可压缩的甲基倍半硅氧烷气凝胶及其表征[J]. 化工进展, 2020, 39(3): 1115-1121. |
[15] | 汪翔,章学来,华维三,郑灵钰,刘璐,喻彩梅. Na2HPO4•12H2O相变储能复合材料制备及热物性[J]. 化工进展, 2019, 38(12): 5457-5464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |