化工进展 ›› 2021, Vol. 40 ›› Issue (6): 3421-3433.DOI: 10.16085/j.issn.1000-6613.2020-1446
李民康1,2(), 张莉娜2, 张阿方1, 赵永慧2, 孙楠楠2(), 魏伟2()
收稿日期:
2020-07-27
修回日期:
2020-09-05
出版日期:
2021-06-06
发布日期:
2021-06-22
通讯作者:
孙楠楠,魏伟
作者简介:
李民康(1995—),男,硕士研究生,研究方向为CO2气体催化转化。E-mail:LI Minkang1,2(), ZHANG Lina2, ZHANG Afang1, ZHAO Yonghui2, SUN Nannan2(), WEI Wei2()
Received:
2020-07-27
Revised:
2020-09-05
Online:
2021-06-06
Published:
2021-06-22
Contact:
SUN Nannan,WEI Wei
摘要:
丙炔酸类化合物是一类用途广泛的有机中间体,以CO2为羧基化试剂,将其插入到端基炔烃的C—H(sp)键是制备丙炔酸类化合物的一条新型路线,其绿色化程度显著高于传统方法。本文在系统分析CO2路线制备丙炔酸类化合物反应机理的基础上,梳理了该反应催化体系的研究进展,并总结了近年来与该反应实际应用密切相关的前瞻研究。基于上述总结,本文认为后续研究应开展的工作包括:①从实际工况角度(耐强碱性反应体系、耐强极性溶剂等)出发进行催化剂的设计;②强化反应机理研究,明确不同催化剂上的反应路径和中间体形态差异,夯实理论基础;③强化潜在技术瓶颈问题的突破,尤其是湿度敏感、碱助剂循环、下游合成网络衔接等。
中图分类号:
李民康, 张莉娜, 张阿方, 赵永慧, 孙楠楠, 魏伟. CO2插入C—H(sp)键制备丙炔酸衍生物的研究进展[J]. 化工进展, 2021, 40(6): 3421-3433.
LI Minkang, ZHANG Lina, ZHANG Afang, ZHAO Yonghui, SUN Nannan, WEI Wei. Research advances on the carboxylation of terminal alkynes with CO2[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3421-3433.
催化剂 | 温度/℃ | 压力/MPa | 时间/h | 收率/% | TON | TOF/h-1 | CTA-D/CTA-E | 参考文献 |
---|---|---|---|---|---|---|---|---|
(IPr)CuCl | 60 | 1.5 | 24 | 91 | 9 | 0.38 | CTA-E | [ |
Cu-NHC | 25 | 0.1 | 16 | 90 | 45 | 2.81 | CTA-D | [ |
bis-(NHC)-Ag | 室温 | 0.1 | 16 | 85 | 85 | 5.31 | CTA-D | [ |
L3/Ag | 35 | 0.1 | 24 | 98 | 392 | 16.33 | CTA-D | [ |
Ag-NHC化合物 | 室温 | 0.1 | 16 | 82 | 82 | 5.13 | CTA-D | [ |
Ag-NHC化合物 | 40 | 0.1 | 48 | 92 | 46 | 0.96 | CTA-E | [ |
Ag-NHC化合物 | 60 | 0.2 | 12 | 47 | 5 | 0.39 | CTA-D | [ |
CuI+PEt3 | 室温 | 0.1 | 24 | 90 | 11 | 0.47 | CTA-E | [ |
[CuI(dtbpf)] | 25 | 0.1 | 24 | 96 | 48 | 2.00 | CTA-D | [ |
[Cu2(μ-CN)2(k2-P,P-dppet)2] | 25 | 0.1 | 12 | 97 | 97 | 8.08 | CTA-D | [ |
AgI | 50 | 0.2 | 12 | 94 | 94 | 7.83 | CTA-D | [ |
AgI | 60 | 1.5 | 24 | 91 | 910 | 37.92 | CTA-E | [ |
CuI | 50 | 8 | 12 | 92 | 46 | 3.83 | CTA-E | [ |
AgBF4 | 50 | 0.1 | 16 | 99 | 1980 | 123.75 | CTA-D | [ |
CuI | 80 | 0.1 | 18 | 99 | 10 | 0.55 | CTA-E | [ |
AgI | 40 | 0.1 | 48 | 88 | 18 | 0.37 | CTA-E | [ |
CuCl | 室温 | 0.1 | 16 | 90 | 18 | 1.13 | CTA-D | [ |
Ag2WO4 | 室温 | 0.1 | 24 | 99 | 40 | 1.65 | CTA-E | [ |
Ag(O2CNMe2) | 50 | 0.1 | 24 | 77 | 39 | 1.60 | CTA-E | [ |
表1 一价铜盐/银盐催化剂体系CTA反应催化性能对比
催化剂 | 温度/℃ | 压力/MPa | 时间/h | 收率/% | TON | TOF/h-1 | CTA-D/CTA-E | 参考文献 |
---|---|---|---|---|---|---|---|---|
(IPr)CuCl | 60 | 1.5 | 24 | 91 | 9 | 0.38 | CTA-E | [ |
Cu-NHC | 25 | 0.1 | 16 | 90 | 45 | 2.81 | CTA-D | [ |
bis-(NHC)-Ag | 室温 | 0.1 | 16 | 85 | 85 | 5.31 | CTA-D | [ |
L3/Ag | 35 | 0.1 | 24 | 98 | 392 | 16.33 | CTA-D | [ |
Ag-NHC化合物 | 室温 | 0.1 | 16 | 82 | 82 | 5.13 | CTA-D | [ |
Ag-NHC化合物 | 40 | 0.1 | 48 | 92 | 46 | 0.96 | CTA-E | [ |
Ag-NHC化合物 | 60 | 0.2 | 12 | 47 | 5 | 0.39 | CTA-D | [ |
CuI+PEt3 | 室温 | 0.1 | 24 | 90 | 11 | 0.47 | CTA-E | [ |
[CuI(dtbpf)] | 25 | 0.1 | 24 | 96 | 48 | 2.00 | CTA-D | [ |
[Cu2(μ-CN)2(k2-P,P-dppet)2] | 25 | 0.1 | 12 | 97 | 97 | 8.08 | CTA-D | [ |
AgI | 50 | 0.2 | 12 | 94 | 94 | 7.83 | CTA-D | [ |
AgI | 60 | 1.5 | 24 | 91 | 910 | 37.92 | CTA-E | [ |
CuI | 50 | 8 | 12 | 92 | 46 | 3.83 | CTA-E | [ |
AgBF4 | 50 | 0.1 | 16 | 99 | 1980 | 123.75 | CTA-D | [ |
CuI | 80 | 0.1 | 18 | 99 | 10 | 0.55 | CTA-E | [ |
AgI | 40 | 0.1 | 48 | 88 | 18 | 0.37 | CTA-E | [ |
CuCl | 室温 | 0.1 | 16 | 90 | 18 | 1.13 | CTA-D | [ |
Ag2WO4 | 室温 | 0.1 | 24 | 99 | 40 | 1.65 | CTA-E | [ |
Ag(O2CNMe2) | 50 | 0.1 | 24 | 77 | 39 | 1.60 | CTA-E | [ |
催化剂 | 温度 /℃ | 压力 /MPa | 时间 /h | 收率 /% | TON | TOF /h-1 | CTA-D/CTA-E | 参考文献 |
---|---|---|---|---|---|---|---|---|
Ag@P-NHC | 25 | 0.1 | 20 | 98 | 327 | 16.35 | CTA-D | [ |
CuBr@C | 80 | 0.1 | 2 | 90 | 18 | 9.00 | CTA-E | [ |
Ag/PCNF | 25 | 0.1 | 18 | 98 | 71 | 3.94 | CTA-D | [ |
Ag@PHNCT | 50 | 0.1 | 20 | 98 | 94 | 4.68 | CTA-D | [ |
Cu-CN | 80 | 0.1 | 10 | 97 | 97 | 9.70 | CTA-D | [ |
AgNPs@m-MgO | 70 | 0.1 | 12 | 98 | 47 | 3.89 | CTA-D | [ |
Ag/M-CeO2 | 60 | 0.5 | 24 | 91 | 26 | 1.09 | CTA-E | [ |
CuNPs/Al2O3 | 60 | 0.2 | 16 | 92 | 18 | 1.15 | CTA-E | [ |
Ag/F-Al2O3 | 50 | 6 | 18 | 62 | 12 | 0.67 | CTA-D | [ |
Ag/Schiff-SiO2 | 60 | 0.1 | 24 | 98 | 705 | 29.38 | CTA-D | [ |
表2 负载型催化剂CTA反应催化性能对比
催化剂 | 温度 /℃ | 压力 /MPa | 时间 /h | 收率 /% | TON | TOF /h-1 | CTA-D/CTA-E | 参考文献 |
---|---|---|---|---|---|---|---|---|
Ag@P-NHC | 25 | 0.1 | 20 | 98 | 327 | 16.35 | CTA-D | [ |
CuBr@C | 80 | 0.1 | 2 | 90 | 18 | 9.00 | CTA-E | [ |
Ag/PCNF | 25 | 0.1 | 18 | 98 | 71 | 3.94 | CTA-D | [ |
Ag@PHNCT | 50 | 0.1 | 20 | 98 | 94 | 4.68 | CTA-D | [ |
Cu-CN | 80 | 0.1 | 10 | 97 | 97 | 9.70 | CTA-D | [ |
AgNPs@m-MgO | 70 | 0.1 | 12 | 98 | 47 | 3.89 | CTA-D | [ |
Ag/M-CeO2 | 60 | 0.5 | 24 | 91 | 26 | 1.09 | CTA-E | [ |
CuNPs/Al2O3 | 60 | 0.2 | 16 | 92 | 18 | 1.15 | CTA-E | [ |
Ag/F-Al2O3 | 50 | 6 | 18 | 62 | 12 | 0.67 | CTA-D | [ |
Ag/Schiff-SiO2 | 60 | 0.1 | 24 | 98 | 705 | 29.38 | CTA-D | [ |
催化剂 | 温度/℃ | 压力/MPa | 时间/h | 收率/% | TON | TOF/h-1 | CTA-D/ CTA-E | 参考文献 |
---|---|---|---|---|---|---|---|---|
Ag@MIL-101(Fe) | 50 | 0.1 | 15 | 97 | 36 | 2.40 | CTA-D | [ |
Ag@UIO-66(Zr) | 50 | 0.1 | 15 | 96.5 | 21 | 1.42 | CTA-D | [ |
AgNPs/Co-MOF | 80 | 0.1 | 14 | 98 | 49 | 3.50 | CTA-D | [ |
Pd-Cu/MIL-101 | 25 | 0.1 | 24 | 96 | 691 | 28.79 | CTA-D | [ |
Ag@1 | 60 | 0.1 | 6 | 91 | 18 | 3.03 | CTA-E | [ |
Ag@ZIF-8 | 40 | 0.1 | 20 | 97 | 86 | 4.31 | CTA-D | [ |
UiO-66@UiO-67-BPY-Ag | 50 | 0.1 | 24 | 97 | 80 | 3.31 | CTA-D | [ |
ZIF-8@Au25@ZIF-67 | 50 | 0.1 | 12 | 99 | 4433 | 369.42 | CTA-D | [ |
Cu-MOFs | 80 | 0.1 | 4 | 80 | 20 | 5.00 | CTA-E | [ |
Ag/KAPs-P | 60 | 0.1 | 10 | 92 | 9936 | 993.60 | CTA-D | [ |
Ag@CTFN | 60 | 0.1 | 24 | 97 | 128 | 5.34 | CTA-D | [ |
CTF-DCE-Ag | 50 | 0.1 | 24 | 90.2 | 226 | 9.42 | CTA-D | [ |
Ag@NOMP | 50 | 0.1 | 12 | 96 | 960 | 80.00 | CTA-D | [ |
Ag-HMP | 80 | 0.1 | 12 | 98 | 82 | 6.86 | CTA-D | [ |
AgNPs@m-PS-PC | 70 | 0.1 | 10 | 91 | 779 | 77.93 | CTA-D | [ |
[Cu(Im12)2][CuBr2] | 25 | 0.1 | 12 | 96 | 10 | 0.83 | CTA-E | [ |
CuCl2@poly-GLY(1-vim)3(OMs)3 | 40 | 4 | 12 | 96 | 5 | 0.40 | CTA-E | [ |
表3 新型催化剂CTA反应催化性能对比
催化剂 | 温度/℃ | 压力/MPa | 时间/h | 收率/% | TON | TOF/h-1 | CTA-D/ CTA-E | 参考文献 |
---|---|---|---|---|---|---|---|---|
Ag@MIL-101(Fe) | 50 | 0.1 | 15 | 97 | 36 | 2.40 | CTA-D | [ |
Ag@UIO-66(Zr) | 50 | 0.1 | 15 | 96.5 | 21 | 1.42 | CTA-D | [ |
AgNPs/Co-MOF | 80 | 0.1 | 14 | 98 | 49 | 3.50 | CTA-D | [ |
Pd-Cu/MIL-101 | 25 | 0.1 | 24 | 96 | 691 | 28.79 | CTA-D | [ |
Ag@1 | 60 | 0.1 | 6 | 91 | 18 | 3.03 | CTA-E | [ |
Ag@ZIF-8 | 40 | 0.1 | 20 | 97 | 86 | 4.31 | CTA-D | [ |
UiO-66@UiO-67-BPY-Ag | 50 | 0.1 | 24 | 97 | 80 | 3.31 | CTA-D | [ |
ZIF-8@Au25@ZIF-67 | 50 | 0.1 | 12 | 99 | 4433 | 369.42 | CTA-D | [ |
Cu-MOFs | 80 | 0.1 | 4 | 80 | 20 | 5.00 | CTA-E | [ |
Ag/KAPs-P | 60 | 0.1 | 10 | 92 | 9936 | 993.60 | CTA-D | [ |
Ag@CTFN | 60 | 0.1 | 24 | 97 | 128 | 5.34 | CTA-D | [ |
CTF-DCE-Ag | 50 | 0.1 | 24 | 90.2 | 226 | 9.42 | CTA-D | [ |
Ag@NOMP | 50 | 0.1 | 12 | 96 | 960 | 80.00 | CTA-D | [ |
Ag-HMP | 80 | 0.1 | 12 | 98 | 82 | 6.86 | CTA-D | [ |
AgNPs@m-PS-PC | 70 | 0.1 | 10 | 91 | 779 | 77.93 | CTA-D | [ |
[Cu(Im12)2][CuBr2] | 25 | 0.1 | 12 | 96 | 10 | 0.83 | CTA-E | [ |
CuCl2@poly-GLY(1-vim)3(OMs)3 | 40 | 4 | 12 | 96 | 5 | 0.40 | CTA-E | [ |
1 | DECONTO R M, POLLARD D. Contribution of Antarctica to past and future sea-level rise[J]. Nature, 2016, 531(7596): 591-597. |
2 | CARLETON T A, HSIANG S M. Social and economic impacts of climate[J]. Science, 2016, 353(6304): add9837. |
3 | IPCC. Climate change 2013: the physical science basis. working group Ⅰ contribution to the fifth assessment report of the intergovernmental panel on climate change[R]. Cambridge: Cambridge University Press, 2013. |
4 | IEA. World energy outlook 2019[R]. Paris: IEA, 2019. |
5 | MANJOLINHOHO F, ARANT M, GOOßEN K, et al. Catalytic C—H carboxylation of terminal alkynes with carbon dioxide[J]. ChemInform, 2012, 43(44): 2014-2021. |
6 | QIAO C, CAO Y, HE L N. Transition metal-catalyzed carboxylation of terminal alkynes with CO2[J]. Mini-Reviews in Organic Chemistry, 2018, 15: 283-290. |
7 | YU B, DIAO Z F, GUO C X, et al. Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate[J]. Green Chemistry, 2013, 15(9): 2401-2407. |
8 | GOOßEN L J, RODRÍGUEZ N, MANJOLINHO F, et al. Synthesis of propiolic acids via copper-catalyzed insertion of carbon dioxide into the C—H bond of terminal alkynes[J]. Advanced Synthesis & Catalysis, 2010, 352(17): 2913-2917. |
9 | LIU C, LUO Y, ZHANG W Z, et al. DFT studies on the silver-catalyzed carboxylation of terminal alkynes with CO2: an insight into the catalytically activespecies [J]. Organometallics, 2014, 33(12): 2984-2989. |
10 | YASUO FUKUE S O, INOUE YOSHIO. Direct synthesis of alkyl 2-alkynoates from alklynes, CO2, and bromoalkanes catalysed by copper(Ⅰ) or silver(Ⅰ) salt[J]. Journal of the Chemical Society, Chemical Communications, 1994, 18: 2091. |
11 | ZHANG W Z, LI W J, ZHANG X, et al. Cu(Ⅰ)-catalyzed carboxylative coupling of terminal alkynes, allylic chlorides, and CO2[J]. Organic Letters, 2010, 12(21): 4748-4751. |
12 | YU D, ZHANG Y. Copper-and copper-N-heterocyclic carbene-catalyzed C—H activating carboxylation of terminal alkynes with CO2 at ambient conditions[J]. Proceeding of the Royal Society of Sciences of the UnitedStates of America, 2010, 107(47): 20184-20189. |
13 | DÍAZ VELÁZQUEZ H, WU Z X, VANDICHEL M, et al. Inserting CO2 into terminal alkynes via bis-(NHC)-metal complexes [J]. Catalysis Letters, 2017, 147(2): 463-471. |
14 | YUAN Y, CHEN C, ZENG C, et al. Carboxylation of terminal alkynes with carbon dioxide catalyzed by an in situ Ag2O/N-heterocyclic carbene precursor system [J]. ChemCatChem, 2017, 9(5): 882-887. |
15 | LI S S, SUN J, ZHANG Z Z, et al. Carboxylation of terminal alkynes with CO2 using novel silver N-heterocyclic carbene complexes[J]. Dalton Transacitions, 2016, 45(26): 10577-10584. |
16 | ZHANG Z Z, MI R J, GUO F J, et al. 1,3-bis(4-methylbenzyl)imidazol-2-ylidene silver(Ⅰ) chloride catalyzed carboxylative coupling of terminal alkynes, butyl iodide and carbon dioxide[J]. Journal of Saudi Chemical Society, 2017, 21(6): 685-690. |
17 | WANG W, ZHANG G, LANG R, et al. pH-responsive N-heterocyclic carbene copper(Ⅰ) complexes: syntheses and recoverable applications in the carboxylation of arylboronic esters and benzoxazole with carbon dioxide[J]. Green Chemistry, 2013, 15(3): 635-640. |
18 | PAPASTAVROU A T, PAUZE M, GÓMEZ BENGOA E, et al. Unprecedented multicomponent organocatalytic synthesis of propargylic esters via CO2 activation[J]. ChemCatChem, 2019, 11(21): 5379-5386. |
19 | INAMOTO K, ASANO N, KOBAYASHI K, et al. A copper-based catalytic system for carboxylation of terminal alkynes: synthesis of alkyl 2-alkynoates[J]. Organic & Biomolecular Chemistry, 2012, 10(8): 1514-1516. |
20 | TRIVEDI M, SINGH G, KUMAR A, et al. 1,1'-bis(di-tert-butylphosphino) ferrocene copper(Ⅰ) complex catalyzed C—H activation and carboxylation of terminal alkynes[J]. Dalton Transactions, 2015, 44(48): 20874-20882. |
21 | TRIVEDI M, SMREKER J R, SINGH G, et al. Cis-1,2-bis(diphenylphosphino)ethylene copper(Ⅰ) catalyzed C—H activation and carboxylation of terminal alkynes[J]. New Journal of Chemistry, 2017, 41(23): 14145-14151. |
22 | ZHANG X, ZHANG W Z, REN X, et al. Ligand-free Ag(Ⅰ)-catalyzed carboxylation of terminal alkynes with CO2[J]. Organic Letters, 2011, 40(5): 2435-2452. |
23 | ZHANG X, ZHANG W Z, SHI L L, et al. Ligand-free Ag(Ⅰ)-catalyzed carboxylative coupling of terminal alkynes, chloride compounds, and CO2[J]. Tetrahedron, 2012, 68(44): 9085-9089. |
24 | LI F W, SUO Q L, HONG H L, et al. DBU and copper(Ⅰ) mediated carboxylation of terminal alkynes using supercritical CO2 as a reactant and solvent[J]. Tetrahedron Letters, 2014, 55(29): 3878-3880. |
25 | ARNDT M, RISTO E, KRAUSE T, et al. C—H carboxylation of terminal alkynescatalyzed by low loadings of silver(Ⅰ)/DMSO at ambient CO2 pressure[J]. ChemCatChem, 2012, 4(4): 484-487. |
26 | GUO F J, ZHANG Z Z, WANG J Y, et al. Silver-catalyzed one-pot synthesis of benzyl 2-alkynoates under ambient pressure of CO2 and ligand-free conditions[J]. Tetrahedron, 2017, 73(7): 900-906. |
27 | WANG W H, JIA L H, FENG X J, et al. Efficient carboxylation of terminal alkynes with carbon dioxide catalyzed by ligand-free copper catalyst under ambient conditions[J]. Asian Journal of Organic Chemistry, 2019, 8(8): 1501-1505. |
28 | GUO C X, YU B, XIE J N, et al. Silver tungstate: a single-component bifunctional catalyst for carboxylation of terminal alkynes with CO2 in ambient conditions[J]. Green Chemistry, 2015, 17(1): 474-479. |
29 | BRESCIANI G, MARCHETTI F, PAMPALONI G. Carboxylation of terminal alkynes promoted by silver carbamate at ambient pressure[J]. New Journal of Chemistry, 2019, 43(27): 10821-10825. |
30 | YU D Y, TAN M X, ZHANG Y G. Carboxylation of terminal alkynes with carbon dioxide catalyzed by poly(N-heterocyclic carbene)-supported silver nanoparticles[J]. Advanced Synthesis & Catalysis, 2012, 354(6): 969-974. |
31 | YU B, XIE J N, ZHONG C L, et al. Copper()@carbon-catalyzed carboxylation of terminal alkynes with CO2 at atmospheric pressure[J]. ACS Catalysis, 2015, 5(7): 3940-3944. |
32 | LAN X W, LI Y M, DU C, et al. Porous carbon nitride frameworks derived from covalent triazine framework anchored Ag nanoparticles for catalytic CO2 conversion[J]. Chemistry, 2019, 25(36): 8560-8569. |
33 | LAN X W, LI Q, CAO L L, et al. Rebuilding supramolecular aggregates to porous hollow N-doped carbon tube inlaid with ultrasmall Ag nanoparticles: a highly efficient catalyst for CO2 conversion[J]. Applied Surface Science, 2020, 508: 45220-45229. |
34 | YANG P, ZUO S W, ZHANG F T, et al. Carbon nitride-based single-atom Cu catalysts for highly efficient carboxylation of alkynes with atmospheric CO2[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7327-7335. |
35 | CHOWDHURY A H, GHOSH S, ISLAM S M. Flower-like AgNPs@ m-MgO as an excellent catalyst for CO2 fixation and acylation reactions under ambient conditions[J]. New Journal of Chemistry, 2018, 42(17): 14194-14202. |
36 | ZHANG X, WANG D K, JING M Z, et al. Ordered mesoporous CeO2-supported Ag as an effective catalyst for carboxylative coupling reaction using CO2[J]. ChemCatChem, 2019, 11(8): 2089-2098. |
37 | CHOWDHURY A H, KAYAL U, CHOWDHURY I H, et al. Nanoporous ZnO supported CuBr (CuBr/ZnO): an efficient catalyst for CO2 fixation reactions[J]. ChemistrySelect, 2019, 4(3): 1069-1077. |
38 | BONDARENKO G N, DVURECHENSKAYA E G, MAGOMMEDOV E S, et al. Copper(0) nanoparticles supported on Al2O3 as catalyst for carboxylation of terminal alkynes[J]. Catalysis Letters, 2017, 147(10): 2570-2580. |
39 | FINASHINA E D, KUSTOV L M, TKACHENKO O P, et al. Carboxylation of phenylacetylene by carbon dioxide on heterogeneous Ag-containing catalysts[J]. Russian Chemical Bulletin: International Edition, 2014, 63(12): 2652-2656. |
40 | WU Z L, SUN L, LIU Q G, et al. A Schiff base-modified silver catalyst for efficient fixation of CO2 as carboxylic acid at ambient pressure[J]. Green Chemistry, 2017, 19(9): 2080-2085. |
41 | LIU X H, MA J G, NIU Z, et al. An efficient nanoscale heterogeneous catalyst for the capture and conversion of carbon dioxide at ambient pressure[J]. Angewandte Chemie: International Edition, 2015, 54(3): 988-991. |
42 | ZHU N N, LIU X H, LI T, et al. Composite system of Ag nanoparticles and metal-organic frameworks for the capture and conversion of carbon dioxide under mild conditions[J]. Inorganic Chemistry, 2017, 56(6): 3414-3420. |
43 | MOLLA R A, GHOSH K, BANERJEE B, et al. Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure[J]. Journal of Colloid and Interface Science, 2016, 477: 20-29. |
44 | TRIVEDI M, BHASKARAN B, KUMAR A, et al. Metal-organic framework MIL-101 supported bimetallic Pd-Cu nanocrystals as efficient catalysts for chromium reduction and conversion of carbon dioxide at room temperature[J]. New Journal of Chemistry, 2016, 40(4): 3109-3118. |
45 | DUTTA G, JANA A K, SINGH D K, et al. Encapsulation of silver nanoparticles in an amine-functionalized porphyrin metal-organic framework and its use as a heterogeneous catalyst for CO2 fixation under atmospheric pressure[J]. Chemistry—An Asian Journal, 2018, 13(18): 2677-2684. |
46 | SHI J L, ZHANG L N, SUN N N, et al. Facile and rapid preparation of Ag@ZIF-8 for carboxylation of terminal alkynes with CO2 in mild conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 28858-28867. |
47 | GONG Y Y, YUAN Y, CHEN C, et al. Core-shell metal-organic frameworks and metal functionalization to access highest efficiency in catalytic carboxylation[J]. Journal of Catalysis, 2019, 371: 106-115. |
48 | YUN Y P, SHENG H T, BAO K, et al. Design and remarkable efficiency of the robust sandwich cluster composite nanocatalysts ZIF-8@Au25@ZIF-67[J]. Journal of the American Chemical Society, 2020, 142(9): 4126-4130. |
49 | XIONG G, YU B, DONG J, et al. Cluster-based MOFs with accelerated chemical conversion of CO2 through C—C bond formation[J]. Chemical Communications, 2017, 53(44): 6013-6016. |
50 | GANINA O G, BONDARENKO G N, ISAEVA V I, et al. Cu-MOF-catalyzed carboxylation of alkynes and epoxides[J]. Russian Journal of Organic Chemistry, 2019, 55(12): 1813-1820. |
51 | WU Z L, LIU Q G, YANG X F, et al. Knitting aryl network polymers-incorporated Ag nanoparticles: a mild and efficient catalyst for the fixation of CO2 as carboxylic acid[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(11): 9634-9639. |
52 | LAN X W, DU C, CAO L L, et al. Ultrafine Ag nanoparticles encapsulated by covalent triazine framework nanosheets for CO2 conversion[J]. ACS Applied Materials & Interfaces, 2018, 10(45): 38953-38962. |
53 | DANG Q Q, LIU C Y, WANG X M, et al. Novel covalent triazine framework for high-performance CO2 capture and alkyne carboxylation reaction[J]. ACS Applied Materials & Interfaces, 2018, 10(33): 27972-27978. |
54 | ZHANG W, MEI Y, HUANG X, et al. Size-controlled growth of silver nanoparticles onto functionalized ordered mesoporous polymers for efficient CO2 upgrading[J]. ACS Applied Materials & Interfaces, 2019, 11(47): 44241-44248. |
55 | GHOSH S, GHOSH A, RIYAJUDDIN S, et al. Silver nanoparticles architectured HMP as a recyclable catalyst for tetramic acid and propiolic acid synthesis through CO2 capture at atmospheric pressure[J]. ChemCatChem, 2020, 12(4): 1055-1067. |
56 | SALAM N, PAUL P, GHOSH S, et al. AgNPs encapsulated by an amine-functionalized polymer nanocatalyst for CO2 fixation as a carboxylic acid and the oxidation of cyclohexane under ambient conditions[J]. New Journal of Chemistry, 2020, 44(14): 5448-5456. |
57 | XIE J N, YU B, ZHOU Z H, et al. Copper(Ⅰ)-based ionic liquid-catalyzed carboxylation of terminal alkynes with CO2 at atmospheric pressure[J]. Tetrahedron Letters, 2015, 56(50): 7059-7062. |
58 | CHAUGULE A A, TAMBOLI A H, KIM H. CuCl2@poly-IL catalyzed carboxylation of terminal alkynes through CO2 utilization[J]. Chemical Engineering Journal, 2017, 326: 1009-1019. |
59 | WANG X, LIM Y N, LEE C, et al. 1,5,7-triazabicyclo[4.4.0]dec-1-ene-mediated acetylene dicarboxylation and alkyne carboxylation using carbon dioxide[J]. European Journal of Organic Chemistry, 2013(10): 1867-1871. |
60 | TONIOLO D, BOBBINK F D, DYSON P J, et al. Anhydrous conditions enable the catalyst-free carboxylation of aromatic alkynes with CO2 under mild conditions[J]. Helvetica Chimica Acta, 2020, 103(2): e1900258. |
61 | YU D Y, ZHANG Y G. The direct carboxylation of terminal alkynes with carbon dioxide[J]. Green Chemistry, 2011, 13(5): 1275-1279. |
62 | WANG W H, FENG X J, SUI K, et al. Transition metal-free carboxylation of terminal alkynes with carbon dioxide through dual activation: synthesis of propiolic acids[J]. Journal of CO2 Utilization, 2019, 32: 140-145. |
63 | YU D Y, ZHOU F, LIM D S, et al. NHC-Ag/Pd-catalyzed reductive carboxylation of terminal alkynes with CO2 and H2: a combined experimental and computational study for fine-tuned selectivity [J]. ChemSusChem, 2017, 10(5): 836-841. |
64 | SONG B, HE B Z, QIN A J, et al. Direct polymerization of carbon dioxide, diynes, and alkyl dihalides under mild reaction conditions[J]. Macromolecules, 2017, 51(1): 42-48. |
65 | KUGE K, LUO Y, FUJITA Y, et al. Copper-catalyzed stereodefined construction of acrylic acid derivatives from terminal alkynes via CO2 insertion[J]. Organic Letters, 2017, 19(4): 854-857. |
66 | WENDLING T, RISTO E, KRAUSE T, et al. Salt-free strategy for the insertion of CO2 into C—H bonds: catalytic hydroxymethylation of alkynes[J]. Chemistry, 2018, 24(23): 6019-6024. |
[1] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[4] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[5] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[6] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[7] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[8] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[12] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |