化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2730-2738.DOI: 10.16085/j.issn.1000-6613.2020-1178
收稿日期:
2020-06-24
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
付志敏
作者简介:
雷欣(1995—),女,硕士研究生,研究方向为水污染控制。E-mail:基金资助:
LEI Xin(), YAN Rong, MU Yujie, ZHANG Yuancan, FU Zhimin()
Received:
2020-06-24
Online:
2021-05-06
Published:
2021-05-24
Contact:
FU Zhimin
摘要:
厌氧氨氧化工艺是治理水体氮污染的一种绿色、高效新型生物技术。然而,厌氧氨氧化菌世代时间长,对环境敏感性高,致使厌氧氨氧化系统启动缓慢、运行稳定性较低,进而导致厌氧氨氧化工艺在实际应用中受限。铁不仅是环境中普遍存在的金属元素,也是微生物生长所需的必要营养元素之一。本文综述了铁元素价态及投加量对基于厌氧氨氧化反应的废水脱氮工艺启动及运行过程中含氮污染物去除效果,分析铁元素存在时,铁/氮元素的反应途径、厌氧氨氧化菌生长速率、颗粒形成以及微生物群落组成演变等方面的作用关系,旨在深入探究和阐释元素铁对于厌氧氨氧化菌脱氮性能的内在作用机制,为实现工程化利用铁强化厌氧氨氧化系统脱氮过程、提高微生物活性提供科学指导。
中图分类号:
雷欣, 闫荣, 慕玉洁, 章院灿, 付志敏. 铁元素对厌氧氨氧化菌脱氮效能的影响[J]. 化工进展, 2021, 40(5): 2730-2738.
LEI Xin, YAN Rong, MU Yujie, ZHANG Yuancan, FU Zhimin. Effect of iron on nitrogen removal efficiency of anaerobic ammonium oxidation bacteria[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2730-2738.
金属 | 污泥种类 | 反应器装置 | 时长 | 污泥浓度 | 氮去除情况 | 浓度 | 参考文献 |
---|---|---|---|---|---|---|---|
nZVI | 混合活性污泥 | 序批式反应器 | 310d | 氨氮和亚硝酸盐的去除率在日常测量中增加了58% | 0.04~5000μg·L-1 | [ | |
厌氧活性污泥 | 升流式好氧 污泥床 | 150d | (2000±20)mgMLSS·L-1 | 平均NH | 5.26g·L-1 | [ | |
厌氧活性污泥 | 升流式好氧 污泥床 | 150d | (2000±20)mgMLSS·L-1 | 平均NH | 5.26g·L-1 | [ | |
Anammox污泥 | 升流式厌氧 污泥床 | 130d | 12.0gVSS·L-1 | 氮去除效率(NRE)保持在85%以上 | 1.0~200mg·L-1 | [ | |
Fe(Ⅱ) | 500mL硝化污泥和100mL Anammox污泥 | 生物滤池 | 179d | 最高总氮去除率0.58kg·m-3·d-1 | 1~5mg·L-1 | [ | |
Anammox污泥 | 500mL血清瓶 | 71个周期 /10h | 10g Anammox湿污泥 | 最高脱氨效能0.65kg·m-3·d-1 | 5mg·L-1 | [ | |
Anammox种子污泥 | 上流固定床塔式 反应器 | 144d | 3.683gVSS·L-1 | 总氮去除率8.198~9.135kg·m-3·d-1 | 0.09~0.12mmol·L-1 | [ | |
以竹炭为载体的 Anammox颗粒污泥 | 100mL上流式 反应器 | 205d | 容积总氮去除负荷2.53kg·m-3·d-1 | 0.075mmol·L-1 | [ | ||
厌氧活性污泥 | 上流柱式 反应器 | 75d | 2.54gMLSS·L-1 | 最高氮去除负荷1400gN·m-3·d-1 | 0.09mmol·L-1 | [ | |
厌氧活性污泥 | 厌氧序批式 反应器 | 210d | 平均NH | 0.085mmol·L-1 | [ | ||
Anammox | 序批式生物膜 反应器 | 216d | 氮去除率95%,氮去除率提高15%(0.04mmol·L-1) | 0.08mmol·L-1 | [ | ||
Fe0+ Fe2+ | Anammox污泥 | 升流式厌氧 污泥床 | 60d | 3.15gMLSS·L-1 | 氮去除率最大值达到88.43%,总氮去除率最大值达到80.77% | [ | |
Fe(Ⅱ) Fe(Ⅲ) | 脱氮污泥 | 序批式反应器 | 60d | 4.13gTSS·L-1 | 最高平均脱氮率250mgN·L-1·d-1 | Fe(Ⅱ)<1.3mg·L-1 Fe(Ⅲ)<0.4mg·L-1 | [ |
Fe(Ⅲ) | Anammox污泥 | 500mL血清瓶 | 71个周期 /10h | 10g Anammox湿污泥 | 最高脱氮效能0.51kg·m-3·d-1 | 5mg·L-1 | [ |
活性污泥 | 序批式反应器 | 2个月 | 总氮去除负荷0.95kg·m-3·d-1 | 6mg·L-1 | [ | ||
颗粒污泥 | 升流式厌氧 污泥床 | 97d | 11.1gSS·L-1;8.2gVSS·L-1 | 氮去除率73.6%±12.8%;最高氮去除负荷(2.6±0.9)kgN·m-3·d-1 | 3.68mg·L-1 | [ |
表1 铁元素对厌氧氨氧化脱氮效能的影响
金属 | 污泥种类 | 反应器装置 | 时长 | 污泥浓度 | 氮去除情况 | 浓度 | 参考文献 |
---|---|---|---|---|---|---|---|
nZVI | 混合活性污泥 | 序批式反应器 | 310d | 氨氮和亚硝酸盐的去除率在日常测量中增加了58% | 0.04~5000μg·L-1 | [ | |
厌氧活性污泥 | 升流式好氧 污泥床 | 150d | (2000±20)mgMLSS·L-1 | 平均NH | 5.26g·L-1 | [ | |
厌氧活性污泥 | 升流式好氧 污泥床 | 150d | (2000±20)mgMLSS·L-1 | 平均NH | 5.26g·L-1 | [ | |
Anammox污泥 | 升流式厌氧 污泥床 | 130d | 12.0gVSS·L-1 | 氮去除效率(NRE)保持在85%以上 | 1.0~200mg·L-1 | [ | |
Fe(Ⅱ) | 500mL硝化污泥和100mL Anammox污泥 | 生物滤池 | 179d | 最高总氮去除率0.58kg·m-3·d-1 | 1~5mg·L-1 | [ | |
Anammox污泥 | 500mL血清瓶 | 71个周期 /10h | 10g Anammox湿污泥 | 最高脱氨效能0.65kg·m-3·d-1 | 5mg·L-1 | [ | |
Anammox种子污泥 | 上流固定床塔式 反应器 | 144d | 3.683gVSS·L-1 | 总氮去除率8.198~9.135kg·m-3·d-1 | 0.09~0.12mmol·L-1 | [ | |
以竹炭为载体的 Anammox颗粒污泥 | 100mL上流式 反应器 | 205d | 容积总氮去除负荷2.53kg·m-3·d-1 | 0.075mmol·L-1 | [ | ||
厌氧活性污泥 | 上流柱式 反应器 | 75d | 2.54gMLSS·L-1 | 最高氮去除负荷1400gN·m-3·d-1 | 0.09mmol·L-1 | [ | |
厌氧活性污泥 | 厌氧序批式 反应器 | 210d | 平均NH | 0.085mmol·L-1 | [ | ||
Anammox | 序批式生物膜 反应器 | 216d | 氮去除率95%,氮去除率提高15%(0.04mmol·L-1) | 0.08mmol·L-1 | [ | ||
Fe0+ Fe2+ | Anammox污泥 | 升流式厌氧 污泥床 | 60d | 3.15gMLSS·L-1 | 氮去除率最大值达到88.43%,总氮去除率最大值达到80.77% | [ | |
Fe(Ⅱ) Fe(Ⅲ) | 脱氮污泥 | 序批式反应器 | 60d | 4.13gTSS·L-1 | 最高平均脱氮率250mgN·L-1·d-1 | Fe(Ⅱ)<1.3mg·L-1 Fe(Ⅲ)<0.4mg·L-1 | [ |
Fe(Ⅲ) | Anammox污泥 | 500mL血清瓶 | 71个周期 /10h | 10g Anammox湿污泥 | 最高脱氮效能0.51kg·m-3·d-1 | 5mg·L-1 | [ |
活性污泥 | 序批式反应器 | 2个月 | 总氮去除负荷0.95kg·m-3·d-1 | 6mg·L-1 | [ | ||
颗粒污泥 | 升流式厌氧 污泥床 | 97d | 11.1gSS·L-1;8.2gVSS·L-1 | 氮去除率73.6%±12.8%;最高氮去除负荷(2.6±0.9)kgN·m-3·d-1 | 3.68mg·L-1 | [ |
1 | 孙霞, 刘扬, 王芳, 等. 固定化微生物技术在富营养化水体修复中的应用[J]. 生态与农村环境学报, 2020, 36(4): 433-441. |
SUN Xia, LIU Yang, WANG Fang, et al. Application of immobilized microorganism technology for the biotreatment of eutrophic water[J]. Journal of Ecology and Rural Environment, 2020, 36(4): 433-441. | |
2 | 雷静, 年夫喜, 冯国栋, 等. 富营养化水体清淤后的微生物脱氮技术应用[J]. 环境工程学报, 2016, 10(7): 3949-3955. |
LEI Jing, NIAN Fuxi, FENG Guodong, et al. Application of microbial removal of nitrogen in dredged eutrophic water[J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3949-3955. | |
3 | PAL M, YESANKAR P J, DWIVEDI A, et al. Biotic control of harmful algal blooms (HABs): a brief review[J]. Journal of Environmental Management, 2020, 268: 110687. |
4 | MULDER A, van de GRAAF A A, ROBERTSON L A, et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiology Ecology, 1995, 16(3): 177-183. |
5 | 宁小芳. 厌氧氨氧化系统启动及活性影响因子研究[D]. 徐州: 中国矿业大学, 2017. |
NING Xiaofang. Study on start-up of anammox system and the factors on its activity[D]. Xuzhou: China University of Mining and Technology, 2017. | |
6 | ZHANG X J, CHEN Z, MA Y P, et al. Influence of elevated Zn(Ⅱ) on Anammox system: microbial variation and zinc tolerance[J]. Bioresource Technology, 2018, 251: 108-113. |
7 | ZHANG X J, CHEN Z, ZHOU Y, et al. Impacts of the heavy metals Cu(Ⅱ), Zn(Ⅱ) and Fe(Ⅱ) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe(Ⅱ) makes a difference[J]. Science of the Total Environment, 2019, 648: 798-804. |
8 | BLÖTHE M, RODEN E E. Composition and activity of an autotrophic Fe(Ⅱ)-oxidizing, nitrate-reducing enrichment culture[J]. Applied and Environmental Microbiology, 2009, 75(21): 6937-6940. |
9 | BISWAS S, BOSE P. Zero-valent iron-assisted autotrophic denitrification[J]. Journal of Environmental Engineering, 2005, 131(8): 1212-1220. |
10 | FEROUSI C, LINDHOUD S, BAYMANN F, et al. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria[J]. Current Opinion in Chemical Biology, 2017, 37: 129-136. |
11 | 王于靖. 外加铁源对低碳氮比污水处理系统脱氮及微生物多样性影响研究[D]. 合肥: 安徽建筑大学, 2019. |
WANG Yujing. Study on the effect of additional iron source on nitrogen removal and microbial diversity in low carbon and nitrogen ratio wastewater treatment System[D]. Hefei: Anhui Jianzhu University, 2019. | |
12 | BI Z, ZHANG W J, SONG G, et al. Iron-dependent nitrate reduction by Anammox consortia in continuous-flow reactors: a novel prospective scheme for autotrophic nitrogen removal[J]. Science of the Total Environment, 2019, 692: 582-588. |
13 | STROUS M, PELLETIER E, MANGENOT S, et al. Deciphering the evolution and metabolism of an Anammox bacterium from a community genome[J]. Nature, 2006, 440(7085): 790-794. |
14 | ERDIM E, YÜCESOY ÖZKAN Z, KURT H, et al. Overcoming challenges in mainstream Anammox applications: utilization of nanoscale zero valent iron (nZVI)[J]. Science of the Total Environment, 2019, 651: 3023-3033. |
15 | REN L F, NI S Q, LIU C, et al. Effect of zero-valent iron on the start-up performance of anaerobic ammonium oxidation (Anammox) process[J]. Environmental Science and Pollution Research, 2015, 22(4): 2925-2934. |
16 | ZHANG Z Z, XU J J, SHI Z J, et al. Unraveling the impact of nanoscale zero-valent iron on the nitrogen removal performance and microbial community of Anammox sludge[J]. Bioresource Technology, 2017, 243: 883-892. |
17 | ZHANG X J, ZHOU Y, ZHAO S Y, et al. Effect of Fe(Ⅱ) in low-nitrogen sewage on the reactor performance and microbial community of an Anammox biofilter[J]. Chemosphere, 2018, 200: 412-418. |
18 | 李祥, 黄勇, 巫川, 等. Fe2+和Fe3+对厌氧氨氧化污泥活性的影响[J]. 环境科学, 2014, (11): 4224-4229. |
LI Xiang, HUANG Yong, WU Chuan, et al. Effect of Fe2 + and Fe3 + on the activity of Anammox[J]. Environmental Science, 2014, (11): 4224-4229. | |
19 | QIAO S, BI Z, ZHOU J T, et al. Long term effects of divalent ferrous ion on the activity of Anammox biomass[J]. Bioresource Technology, 2013, 142: 490-497. |
20 | 张蕾, 郑平, 胡安辉. 铁离子对厌氧氨氧化反应器性能的影响[J]. 环境科学学报, 2009, 29(8): 1629-1634. |
ZHANG Lei, ZHENG Ping, HU Anhui. Effect of ferrous ion on the performance of an Anammox reactor[J]. Acta Scientiae Circumstantiae, 2009, 29(8): 1629-1634. | |
21 | QIAO S, BI Z, ZHOU J T, et al. Fast start-up of Anammox process with appropriate ferrous iron concentration[J]. Bioresource Technology, 2014, 170: 506-512. |
22 | 张黎, 胡筱敏, 姜彬慧, 等. 亚铁离子对厌氧氨氧化反应器脱氮性能的影响[J]. 东北大学学报(自然科学版), 2015, 36(12): 1753-1756. |
ZHANG Li, HU Xiaomin, JIANG Binghui, et al. Effect of iron ions on denitrification performance in Anammox reactor[J]. Journal of Northeastern University(Natural Science), 2015, 36(12): 1753-1756. | |
23 | HUANG X L, GAO D W, PENG S, et al. Effects of ferrous and manganese ions on Anammox process in sequencing batch biofilm reactors[J]. Journal of Environmental Sciences, 2014, 26(5): 1034-1039. |
24 | LIU S T, HORN H. Effects of Fe(Ⅱ) and Fe(Ⅲ) on the single-stage deammonification process treating high-strength reject water from sludge dewatering[J]. Bioresource Technology, 2012, 114: 12-19. |
25 | 袁新明, 王电站. 金属离子对厌氧氨氧化污泥脱氮效能影响[J]. 环境污染与防治, 2019, 41(5): 515-519, 525. |
YUAN Xinming, WANG Dianzhan. Effect of metal ions on nitrogen removal efficiency in Anammox sludge[J]. Environmental Pollution and Control, 2019, 41(5): 515-519, 525. | |
26 | CHEN H, YU J J, JIA X Y, et al. Enhancement of Anammox performance by Cu(Ⅱ), Ni(Ⅱ) and Fe(Ⅲ) supplementation[J]. Chemosphere, 2014, 117: 610-616. |
27 | 康得军, 许江城, 瞿聪, 等. 零价铁联用技术处理废水的研究进展[J]. 工业用水与废水, 2019, 50(3): 7-11. |
KANG Dejun, XU Jiangcheng, QU Cong, et al. Research progress of wastewater treatment by zero-valent iron combined technology[J]. Industrial Water and Wastewater, 2019, 50(3): 7-11. | |
28 | 阚连宝, 刘泽. 纳米零价铁制备与应用的研究进展[J]. 环境科学与技术, 2019, 42(6): 215-223. |
KAN Lianbao, LIU Ze. Research progress in preparation and application of nano-zero-valent iron[J]. Environmental Science and Technology, 2019, 42(6): 215-223. | |
29 | LIU A R, LIU J, HAN J H, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: microscopic and spectroscopic evidence on the formation of nano-and micro-structured iron oxides[J]. Journal of Hazardous Materials, 2017, 322: 129-135. |
30 | GUO B B, CHEN Y H, LV L, et al. Transformation of the zero valent iron dosage effect on Anammox after long-term culture: from inhibition to promotion[J]. Process Biochemistry, 2019, 78: 132-139. |
31 | 郭蓓蓓. 基于铁元素作用下强化厌氧氨氧化工艺研究[D]. 济南: 山东大学, 2019. |
GUO Beibei. The study on strengthening Anammox performance based on iron element[D]. Ji’nan: Shandong University, 2019. | |
32 | ZHANG J X, ZHANG Y B, LI Y, et al. Enhancement of nitrogen removal in a novel Anammox reactor packed with Fe electrode[J]. Bioresource Technology, 2012, 114: 102-108. |
33 | ZHANG Y B, AN X L, QUAN X. Enhancement of sludge granulation in a zero valence iron packed anaerobic reactor with a hydraulic circulation[J]. Process Biochemistry, 2011, 46(2): 471-476. |
34 | ZHU G B, WANG S Y, MA B, et al. Anammox granular sludge in low-ammonium sewage treatment: not bigger size driving better performance[J]. Water Research, 2018, 142: 147-158. |
35 | HENRIQUES I D, LOVE N G. The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins[J]. Water Research, 2007, 41(18): 4177-4185. |
36 | GAO F, ZHANG H M, YANG F L, et al. The effects of zero-valent iron (ZVI) and ferroferric oxide (Fe3O4) on Anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR)[J]. Process Biochemistry, 2014, 49(11): 1970-1978. |
37 | LIU Y, WANG J L. Reduction of nitrate by zero valent iron (ZVI)-based materials: a review[J]. Science of the Total Environment, 2019, 671: 388-403. |
38 | FLYNN P. Abiotic and microbial interactions during anaerobic transformations of Fe(Ⅱ) and NOx-[J]. Frontiers in Microbiology, 2012, 3: 112. |
39 | 张文静, 黄勇, 毕贞, 等. ANAMMOX菌铁自养反硝化工艺的稳定性[J]. 环境科学, 2019, 40(7): 3201-3207. |
ZHANG Wenjing, HUANG Yong, BI Zhen, et al. Stability of ZVI-dependent autotrophic denitrification by Anammox bacteria[J]. Environmental Science, 2019, 40(7): 3201-3207. | |
40 | WANG R, YANG C, ZHANG M, et al. Chemoautotrophic denitrification based on ferrous iron oxidation: reactor performance and sludge characteristics[J]. Chemical Engineering Journal, 2017, 313: 693-701. |
41 | HAN L C, YANG L, WANG H B, et al. Sustaining reactivity of Fe0 for nitrate reduction via electron transfer between dissolved Fe2+ and surface iron oxides[J]. Journal of Hazardous Materials, 2016, 308: 208-215. |
42 | ZHANG H, JIN Z H, LU H, et al. Synthesis of nanoscale zero-valent iron supported on exfoliated graphite for removal of nitrate[J]. Transactions of Nonferrous Metals Society of China, 2006, 16: s345-s349. |
43 | YAN Y, WANG Y Y, WANG W G, et al. Comparison of short-term dosing ferrous ion and nanoscale zero-valent iron for rapid recovery of Anammox activity from dissolved oxygen inhibition[J]. Water Research, 2019, 153: 284-294. |
44 | LEE C, KIM J Y, LEE W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science and Technology, 2008, 42(13): 4927-4933. |
45 | DIAO M H, YAO M S. Use of zero-valent iron nanoparticles in inactivating microbes[J]. Water Research, 2009, 43(20): 5243-5251. |
46 | WU D L, SHEN Y H, DING A Q, et al. Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge[J]. Journal of Hazardous Materials, 2013, 262: 649-655. |
47 | COBY A J, PICARDAL F W. Inhibition of NO3- and NO2- reduction by microbial Fe(Ⅲ) reduction: evidence of a reaction between NO2- and cell surface-bound Fe2+[J]. Applied and Environmental Microbiology, 2005(9): 5267-5274. |
48 | KAMPSCHREUR M J, KLEEREBEZEM R, DE VET WEREN W J M, et al. Reduced iron induced nitric oxide and nitrous oxide emission[J]. Water Research, 2011, 45(18): 5945-5952. |
49 | 王茹, 刘梦瑜, 刘冰茵, 等. 共基质模式下铁盐脱氮反应器的运行性能及微生物学特征[J]. 环境科学, 2019, 40(12): 5446-5455. |
WANG Ru, LIU Mengyu, LIU Bingying, et al. Operational performance and microbiological characteristics of an iron-salt denitrification reactor in co-subsrate mode[J]. Environmental Science, 2019, 40(12): 5446-5455. | |
50 | 王茹, 赵治国, 郑平, 等. 铁型反硝化:一种新型废水生物脱氮技术[J]. 化工进展, 2019, 38(4): 2003-2010. |
WANG Ru, ZHAO Zhiguo, ZHENG Ping, et al. Iron-dependent denitrification, a novel technology to remove nitrogen from wastewaters[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 2003-2010. | |
51 | 吴悦溪, 曾薇, 刘宏, 等. Feammox系统内氮素转化途径的研究[J]. 化工学报, 2020, 71(5): 2265-2272, 1935. |
WU Yuexi, ZENG Wei, LIU Hong, et al. Exploration of nitrogen transformation pathway in Feammox[J]. CIESC Journal, 2020, 71(5): 2265-2272, 1935. | |
52 | YANG W H, WEBER K A, SILVER W L. Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5(8): 538-541. |
53 | GILSON E R, HUANG S, JAFFÉ P R. Biological reduction of uranium coupled with oxidation of ammonium by Acidimicrobiaceae bacterium A6 under iron reducing conditions[J]. Biodegradation, 2015, 26(6): 475-482. |
54 | CARLSON H K, CLARK I C, MELNYK R A, et al. Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: balancing electron uptake and detoxification[J]. Frontiers in Microbiology, 2012, 3: 57. |
55 | OSHIKI M, ISHII S, YOSHIDA K, et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (Anammox) bacteria[J]. Appl. Environ. Microbiol., 2013, 79(13): 4087-4093. |
56 | 周健, 完颜德卿, 黄勇, 等. ANAMMOX菌利用零价铁还原硝酸盐脱氮研究[J]. 环境科学, 2016, 37(11): 4302-4308. |
ZHOU Jian, WAN Yandeqing, HUANG Yong, et al. Biotransformation of nitrate to nitrogen gas driven by Anammox microbes via zero-valent iron under anaerobic conditions[J]. Environmental Science, 2016, 37(11): 4302-4308. | |
57 | 周健, 黄勇, 袁怡, 等. ANAMMOX菌利用零价铁转化氨和硝酸盐实验[J]. 环境科学, 2015, 36(12): 4546-4552. |
ZHOU Jian, HUANG Yong, YUAN Yi, et al. Simultaneous biotransformation of ammonium and nitrate via zero-valent iron on anaerobic conditions[J]. Environmental Science, 2015, 36(12): 4546-4552. | |
58 | 张文静. 厌氧氨氧化菌强化零价铁还原硝酸盐反应机制研究[D]. 苏州: 苏州科技大学, 2019. |
ZHANG Wenjing. Mechanism study of enhancement of ZVI-dependent nitrate reduction by Anammox bacteria[D]. Suzhou: Suzhou University of Science and Technology, 2019. | |
59 | LI X, YUAN Y, HUANG Y, et al. A novel method of simultaneous NH4+ and NO3- removal using Fe cycling as a catalyst: feammox coupled with NAFO[J]. Science of the Total Environment, 2018, 631/632: 153-157. |
60 | YOU G X, WANG P F, HOU J, et al. The use of zero-valent iron (ZVI)–microbe technology for wastewater treatment with special attention to the factors influencing performance: a critical review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(10): 877-907. |
61 | MA Y J, METCH J W, VEJERANO E P, et al. Microbial community response of nitrifying sequencing batch reactors to silver, zero-valent iron, titanium dioxide and cerium dioxide nanomaterials[J]. Water Research, 2015, 68: 87-97. |
62 | KIRSCHLING T L, GREGORY K B, MINKLEY J, et al. Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials[J]. Environmental Science and Technology, 2010, 44(9): 3474-3480. |
63 | LIAO B Q, ALLEN D G, DROPPO I G, et al. Surface properties of sludge and their role in bioflocculation and settleability[J]. Water Research, 2001, 35(2): 339-350. |
64 | KREWULAK K D, VOGEL H J. Structural biology of bacterial iron uptake[J]. Biochimica et Biophysica Acta: Biomembranes, 2008, 1778(9): 1781-1804. |
65 | KARTAL B, KELTJENS J T. Anammox biochemistry: a tale of heme c proteins[J]. Trends in Biochemical Sciences, 2016, 41(12): 998-1011. |
66 | KARTAL B, VAN N L, KELTJENS J T, et al. Anammox-growth physiology, cell biology, and metabolism[J]. Advances in Microbial Physiology, 2012, 60(60):211-262. |
67 | LIU Y W, NI B J. Appropriate Fe(Ⅱ) addition significantly enhances anaerobic ammonium oxidation (Anammox) activity through improving the bacterial growth rate[J]. Scientific Reports, 2015, 5: 8204. |
68 | CHEN Y M, LI C W, CHEN S S. Fluidized zero valent iron bed reactor for nitrate removal[J]. Chemosphere, 2005, 59(6): 753-759. |
69 | 毕贞. Anammox菌的金属暴露响应及其耦合脱氮的数学模拟[D]. 大连: 大连理工大学, 2015. |
BI Zhen. Metal exposure response of Anammox bacteria and mathematical simulation for the nitrogen removal[D]. Dalian: Dalian University of Technology, 2015. | |
70 | 张硕. 低温下金属离子与信号分子对厌氧氨氧化效能及其胞外聚合物的影响试验研究[D]. 沈阳: 沈阳建筑大学, 2019. |
ZHANG Shuo. Experimental study on the effects of metal ions and signal molecules on efficiency and EPS at low temperature [D]. Shenyang: Shenyang Jianzhu University, 2019. | |
71 | LI J, FENG L, BISWAL B K, et al. Bioaugmentation of marine Anammox bacteria (MAB)-based anaerobic ammonia oxidation by adding Fe(Ⅲ) in saline wastewater treatment under low temperature[J]. Bioresource Technology, 2020, 295: 122292. |
72 | STROUS M, KUENEN J G, JETTEN M S. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. |
73 | DE GRAAF A A VAN, DE BRUIJN P, ROBERTSON L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8): 2187-2196. |
74 | WANG X, SHU D T, YUE H. Taxonomical and functional microbial community dynamics in an Anammox-ASBR system under different Fe() supplementation[J]. Applied Microbiology and Biotechnology, 2016, 100(23): 10147-10163. |
[1] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[2] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[3] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[4] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[5] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[6] | 赵星程, 贾方旭, 蒋伟彧, 陈佳熠, 刘晨雨, 姚宏. 氧化还原介体介导厌氧氨氧化生物脱氮的研究进展[J]. 化工进展, 2023, 42(3): 1606-1617. |
[7] | 吴新波, 党鸿钟, 马娇, 严渊, 曾天续, 李维维, 张国珍, 陈永志. A2/O-BAF工艺短程硝化模式下反硝化除磷效能[J]. 化工进展, 2023, 42(2): 1089-1097. |
[8] | 张涵, 张肖静, 马冰冰, 佴灿, 刘烁烁, 马永鹏, 宋亚丽. 以城市废弃污泥为种泥启动厌氧氨氧化工艺的可行性[J]. 化工进展, 2023, 42(2): 1080-1088. |
[9] | 池伟利, 杨宏. 厌氧氨氧化包埋填料处理稀土尾矿废水的中试脱氮和优化[J]. 化工进展, 2023, 42(1): 506-516. |
[10] | 赵愉生, 崔瑞利, 牛贵峰, 赵元生, 程涛, 何盛宝, 宋俊男, 张霖宙. 俄罗斯渣油加氢处理技术开发与工业应用[J]. 化工进展, 2022, 41(7): 3582-3588. |
[11] | 陈加波, 周鑫, 李旭. 以活性污泥为接种污泥厌氧氨氧化工艺的快速启动及脱氮效能[J]. 化工进展, 2022, 41(7): 3900-3907. |
[12] | 王超超, 吴翼伶, 陈嘉巧, 蔡天宁, 刘文如, 李祥, 吴鹏. 新型厌氧水解酸化-短程反硝化厌氧氨氧化工艺同步处理生活污水和含硝酸盐模拟废水[J]. 化工进展, 2022, 41(7): 3890-3899. |
[13] | 汪宇光, 张星星, 王超超, 夏云康, 王垚, 周澄, 吴翼伶, 吴鹏, 徐乐中. 反硝化除磷+短程反硝化厌氧氨氧化工艺的深度脱氮除磷效能[J]. 化工进展, 2022, 41(4): 2191-2201. |
[14] | 刘锋, 张雪智, 王苏琴, 冯震, 葛丹丹, 杨洋. 硫代硫酸盐驱动自养反硝化耦合厌氧氨氧化强化总氮去除[J]. 化工进展, 2022, 41(2): 990-997. |
[15] | 倪清, 来锦波, 彭东岳, 管翠诗, 龙军. 离子液体萃取分离烃类化合物的研究进展[J]. 化工进展, 2022, 41(2): 619-627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |