化工进展 ›› 2021, Vol. 40 ›› Issue (2): 800-812.DOI: 10.16085/j.issn.1000-6613.2020-0676
马浩1(), 蔡滔2, 黄正宇2, 陈利利1, 乔艳辉1, 滕俊江1(), 纪红兵1,3
收稿日期:
2020-04-27
修回日期:
2020-07-29
出版日期:
2021-02-05
发布日期:
2021-02-09
通讯作者:
滕俊江
作者简介:
马浩(1985—),男,博士,副教授,研究方向为离子液体与生物质催化转化。E-mail:基金资助:
Hao MA1(), Tao CAI2, Zhengyu HUANG2, Lili CHEN1, Yanhui QIAO1, Junjiang TENG1(), Hongbing JI1,3
Received:
2020-04-27
Revised:
2020-07-29
Online:
2021-02-05
Published:
2021-02-09
Contact:
Junjiang TENG
摘要:
生物质是自然界中含量丰富且唯一可再生的有机碳资源,可以经过化学反应转化为高附加值碳基化学品和燃料,被认为是传统化石资源的理想替代品。催化材料的设计开发是生物质资源开发和利用的关键所在,离子液体因其独特的可设计性,在生物质资源利用过程中得到广泛应用。鉴于金属活性中心的催化活性以及离子液体的可设计性,将金属活性中心引入离子液体中制备金属基离子液体催化剂在生物质领域受到广泛关注,并取得一定进展。基于上述背景,本文综述了近年来金属基离子液体催化剂在生物质催化转化过程中的研究进展,重点介绍金属氯化物型、多金属氧酸盐型金属基离子液体在生物质基碳水化合物、木质素催化转化制备平台化学品,以及油脂催化(转)酯化制备生物柴油方面的研究进展;同时还综述了金属螯合物型金属基离子液体以及离子液体金属盐在生物质催化转化方面的研究工作。此外,对金属基离子液体在生物质资源方面的应用进行了总结和展望,并对金属基离子液体催化剂的设计提出建议,以期有助于生物质资源的开发和利用。
中图分类号:
马浩, 蔡滔, 黄正宇, 陈利利, 乔艳辉, 滕俊江, 纪红兵. 金属基离子液体催化生物质转化研究进展[J]. 化工进展, 2021, 40(2): 800-812.
Hao MA, Tao CAI, Zhengyu HUANG, Lili CHEN, Yanhui QIAO, Junjiang TENG, Hongbing JI. Catalytic conversion of biomass by metal-based ionic liquids[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 800-812.
催化剂 | 溶剂 | 原料 | 产物 | 反应条件 | 转化率 /% | 产率 /% | 参考 文献 | |
---|---|---|---|---|---|---|---|---|
温度/℃ | 时间/h | |||||||
H3PW12O40 | DMSO | 果糖 | HMF | 120 | 2 | 97.9 | 96.7 | [ |
[C3H6SO3Hmim]3PW12O40 | DMSO | 果糖 | HMF | 120 | 2 | 98.9 | 76.2 | [ |
[C3H6SO3Hmim]3PW12O40 | 2-BuOH | 果糖 | HMF | 120 | 2 | 99.7 | 99.1 | [ |
H3PW12O40 | EtOH | 果糖 | 乙酰丙酸乙酯 | 120 | 12 | >99 | 84 | [ |
[C3H6SO3Hmim]3PW12O40 | EtOH | 果糖 | 乙酰丙酸乙酯 | 120 | 12 | >99 | 76 | [ |
H3PW12O40 | H2O/THF(1∶5) | 葡萄糖 | HMF | 180 | 4 | — | 40.8 | [ |
[SO3HpyzH]HPW12O40 | H2O/THF(1∶5) | 葡萄糖 | HMF | 180 | 5 | — | 46.4 | [ |
H3PW12O40 | H2O/THF(1∶2) | 葡萄糖 | HMF | 160 | 7.5 | 约100 | 49.4 | [ |
[C2H4NH2mim]H2PW12O40 | H2O/THF(1∶2) | 葡萄糖 | HMF | 160 | 7.5 | 约100 | 53.9 | [ |
H3PW12O40 | H2O/MIBK(1∶1) | 纤维素 | 葡萄糖 | 140 | 5 | 54.1 | 27.0 | [ |
[C3H6SO3Hmim]H2PW12O40 | H2O/MIBK(1∶1) | 纤维素 | 葡萄糖 | 140 | 5 | 55.1 | 36.0 | [ |
H3PW12O40 | MeOH | 纤维素 | 乙酰丙酸甲酯 | 150 | 5 | 100 | 29.7 | [ |
[C3H6SO3Hpy]3PW12O40 | MeOH | 纤维素 | 乙酰丙酸甲酯 | 150 | 5 | 100 | 71.4 | [ |
表1 多金属含氧酸与多金属氧酸盐型离子液体催化活性对比
催化剂 | 溶剂 | 原料 | 产物 | 反应条件 | 转化率 /% | 产率 /% | 参考 文献 | |
---|---|---|---|---|---|---|---|---|
温度/℃ | 时间/h | |||||||
H3PW12O40 | DMSO | 果糖 | HMF | 120 | 2 | 97.9 | 96.7 | [ |
[C3H6SO3Hmim]3PW12O40 | DMSO | 果糖 | HMF | 120 | 2 | 98.9 | 76.2 | [ |
[C3H6SO3Hmim]3PW12O40 | 2-BuOH | 果糖 | HMF | 120 | 2 | 99.7 | 99.1 | [ |
H3PW12O40 | EtOH | 果糖 | 乙酰丙酸乙酯 | 120 | 12 | >99 | 84 | [ |
[C3H6SO3Hmim]3PW12O40 | EtOH | 果糖 | 乙酰丙酸乙酯 | 120 | 12 | >99 | 76 | [ |
H3PW12O40 | H2O/THF(1∶5) | 葡萄糖 | HMF | 180 | 4 | — | 40.8 | [ |
[SO3HpyzH]HPW12O40 | H2O/THF(1∶5) | 葡萄糖 | HMF | 180 | 5 | — | 46.4 | [ |
H3PW12O40 | H2O/THF(1∶2) | 葡萄糖 | HMF | 160 | 7.5 | 约100 | 49.4 | [ |
[C2H4NH2mim]H2PW12O40 | H2O/THF(1∶2) | 葡萄糖 | HMF | 160 | 7.5 | 约100 | 53.9 | [ |
H3PW12O40 | H2O/MIBK(1∶1) | 纤维素 | 葡萄糖 | 140 | 5 | 54.1 | 27.0 | [ |
[C3H6SO3Hmim]H2PW12O40 | H2O/MIBK(1∶1) | 纤维素 | 葡萄糖 | 140 | 5 | 55.1 | 36.0 | [ |
H3PW12O40 | MeOH | 纤维素 | 乙酰丙酸甲酯 | 150 | 5 | 100 | 29.7 | [ |
[C3H6SO3Hpy]3PW12O40 | MeOH | 纤维素 | 乙酰丙酸甲酯 | 150 | 5 | 100 | 71.4 | [ |
1 | MANSSON André. Energy, conflict and war: towards a conceptual framework[J]. Energy Research & Social Science, 2014, 4: 106-116. |
2 | CSEFALVAY Edit, HORVATH Istvan T. Sustainability assessment of renewable energy in the USA, Canada, the European Union, China, and the Russian Federation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 8868-8874. |
3 | 王安建, 高芯蕊. 中国能源与重要矿产资源需求展望[J]. 中国科学院院刊, 2020, 35(3): 338-344. |
WANG Anjian, GAO Xinrui. China’s energy and important mineral resources demand perspective[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(3): 338-344. | |
4 | 邹才能, 潘松圻, 赵群. 论中国“能源独立”战略的内涵、挑战及意义[J]. 石油勘探与开发, 2020, 47(2): 416-426. |
ZOU Caineng, PAN Songqi, ZHAO Qun. On the connotation, challenge and significance of China’s “energy independence” strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416-426. | |
5 | ZHOU Chunhui, XIA Xi, LIN Chunxiang, et al. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels[J]. Chemical Society Reviews, 2011, 40(11): 5588-5617. |
6 | ZHANG Zhanrong, SONG Jinliang, HAN Buxing. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6834-6880. |
7 | 徐桂转, 陈炳霖, 张少浩, 等. 生物质转化制备5-乙氧基甲基糠醛液体燃料研究进展[J]. 化工进展, 2019, 38(3): 1259-1268. |
XU Guizhuan, CHEN Binglin, ZHANF Shaohao, et al. A review: research progress in production of 5-ethoxymethylfurfural[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1259-1268. | |
8 | COSTA LOPES André M DA, Rafał BOGEL-ŁUKASIK. Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts[J]. ChemSusChem, 2015, 8: 947-965. |
9 | AMARASEKARA Ananda S. Acidic ionic liquids[J]. Chemical Reviews, 2016, 116(10): 6133-6183. |
10 | BROWN Lucy C, HOGG James M, SWADZBAKWASNY Małgorzata. Lewis acidic ionic liquids[J]. Topics in Current Chemistry, 2017, 375(5): 78. |
11 | 张雄, 徐志祥, 李雪辉, 等. 葡萄糖化学催化异构制备果糖研究进展[J]. 化工进展, 2017, 36(12): 4575-4585. |
ZHANG Xiong, XU Zhixiang, LI Xuehui, et al. Chemical isomerization of glucose into fructose[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4575-4585. | |
12 | 葛立海. 金属基离子液体催化碳水化合物制备5-羟甲基糠醛[D]. 北京: 北京化工大学, 2014. |
GE Lihai. Conversion of carbohydrates to 5-hydroxymethylfurfural catalyzed by metal-based ionic liquids[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
13 | PIDKO Evgeny A, DEGIRMENCI Volkan, SANTEN Rutger A VAN, et al. Glucose activation by transient Cr2+ dimers[J]. Angewandte Chemie, 2010, 49(14): 2530-2534. |
14 | WANG Shurong, ZHAO Yuan, LIN Haizhou, et al. Conversion of C5 carbohydrates into furfural catalyzed by a Lewis acidic ionic liquid in renewable γ-valerolactone[J]. Green Chemistry, 2017, 19(16): 3869-3879. |
15 | ZHAO Yuan, XU Hao, LU Kaifeng, et al. Dehydration of xylose to furfural in butanone catalyzed by Brønsted-Lewis acidic ionic liquids[J]. Energy Science & Engineering, 2019, 7(5): 2237-2246. |
16 | CHINNAPPAN Amutha, JADHAV Arvind H, KIM Hern, et al. Ionic liquid with metal complexes: an efficient catalyst for selective dehydration of fructose to 5-hydroxymethylfurfural[J]. Chemical Engineering Journal, 2014, 237: 95-100. |
17 | YAO Lin, LIU Shiwei, LI Lu, et al. Synthesis of hydroxymethylfurfural from sucrose using Brönsted-Lewis acidic ionic liquid[J]. Bulletin of the Chemical Society of Ethiopia, 2016, 30(2): 283-288. |
18 | LIU Shiwei, WANG Kai, YU Hailong, et al. Catalytic preparation of levulinic acid from cellobiose via Brønsted-Lewis acidic ionic liquids functional catalysts[J]. Scientific Reports, 2019, 9: 810. |
19 | PARVEEN Firdaus, PATRA Tanmoy, UPADHYAYULA Sreedevi. A structure-activity relationship study using DFT analysis of Bronsted-Lewis acidic ionic liquids and synergistic effect of dual acidity in one-pot conversion of glucose to value-added chemicals[J]. New Journal of Chemistry, 2018, 42(2): 1423-1430. |
20 | ZHAO Zheng, LI Na, BHUTTO Abdul Waheed, et al. N-methyl-2-pyrrolidonium-based Brönsted-Lewis acidic ionic liquids as catalysts for the hydrolysis of cellulose[J]. Science China Chemistry, 2016, 59(5): 564-570. |
21 | FANG Jing, ZHENG Wenwen, LIU Ke, et al. Molecular design and experimental study on the synergistic catalysis of cellulose into 5-hydroxymethylfurfural with Brønsted–Lewis acidic ionic liquids[J]. Chemical Engineering Journal, 2020, 385: 123796. |
22 | LI Zhangmin, CAI Zhenping, ZENG Qiang, et al. Selective catalytic tailoring of the H unit in herbaceous lignin for methyl p-hydroxycinnamate production over metal-based ionic liquids[J]. Green Chemistry, 2018, 20(16): 3743-3752. |
23 | ZHANG Tian, ZHANG Yaqin, WANG Yanlei, et al. Theoretical insights into the depolymerization mechanism of lignin to methyl p-hydroxycinnamate by [Bmim][FeCl4] ionic liquid[J]. Frontiers in Chemistry, 2019, 7: 446. |
24 | 李章敏. 金属基离子液体定向解聚木质素制备高值化学品的研究[D]. 广州: 华南理工大学, 2018. |
LI Zhangmin. Preparation of high-value chemicals by selective depolymerization of lignin with metal-based ionic liquids[D]. Guangzhou: South China University of Technology, 2018. | |
25 | CHOI Jae Hyung, YONG Yong Beom, Suk Hee LEE, et al. Synthesis of biodiesel from soybean oil using Lewis acidic ionic liquids containing metal chloride salts[J]. Korean Journal of Chemical Engineering, 2010, 48(5): 643-648. |
26 | LIU Shiwei, WANG Zhiping, LI Kesheng, et al. Brønsted-Lewis acidic ionic liquid for the “one-pot” synthesis of biodiesel from waste oil[J]. Journal of Renewable & Sustainable Energy, 2013, 5(2): 023111. |
27 | CAI Dongren, XIE Yiwei, LI Ling, et al. Design and synthesis of novel Brønsted-Lewis acidic ionic liquid and its application in biodiesel production from soapberry oil[J]. Energy Conversion and Management, 2018, 166: 318-327. |
28 | LIU Shiwei, XIE Congxia, YU Shitao, et al. A Brønsted-Lewis acidic ionic liquid its synthesis and use as the catalyst in rosin dimerization[J]. Chinese Journal of Catalysis, 2009, 30(5): 401-406. |
29 | LIU Shiwei, ZHOU Lin, YU Shitao, et al. Polymerization of α-pinene using Lewis acidic ionic liquid as catalyst for production of terpene resin[J]. Biomass and Bioenergy, 2013, 57: 238-242. |
30 | LIU Shiwei, ZHOU Hongxia, YU Shitao, et al. Dimerization of fatty acid methyl ester using Brönsted-Lewis acidic ionic liquid as catalyst[J]. Chemical Engineering Journal, 2011, 174(1): 396-399. |
31 | MARTINETTO Yohan, PEGOT Bruce, Catherine ROCH-MARCHAL, et al. Designing functional polyoxometalate-based ionic liquid crystals and ionic liquids[J]. European Journal of Inorganic Chemistry, 2020 (3): 228-247. |
32 | DENG Weiping, ZHANG Qinghong, WANG Ye. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals[J]. Dalton Transactions, 2012, 41(33): 9817-9831. |
33 | 候其东, 鞠美庭, 李维尊, 等. 基于离子液体的生物质组分分离研究进展[J]. 化工进展, 2016, 35(10): 3022-3031. |
HOU Qidong, JU Meiting, LI Weizun, et al. Research progress on biomass fractionation using ionic liquids[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3022-3031. | |
34 | QU Yongshui, HUANG Chongpin, ZHANG Jie, et al. Efficient dehydration of fructose to 5-hydroxymethylfurfural catalyzed by a recyclable sulfonated organic heteropolyacid salt[J]. Bioresource Technology, 2012, 106: 170-172. |
35 | CHEN Jinzhu, ZHAO Guoying, CHEN Limin. Efficient production of 5-hydroxymethylfurfural and alkyl levulinate from biomass carbohydrate using ionic liquid-based polyoxometalate salts[J]. RSC Advances, 2014, 4: 4194-4202. |
36 | ZHAO Pingping, CUI Hongyou, ZHANG Yunyun, et al. Synergetic effect of Brønsted/Lewis acid sites and water on the catalytic dehydration of glucose to 5-hydroxymethylfurfural by heteropolyacid-based ionic hybrids[J]. Chemistry Open, 2018, 7(10): 824-832. |
37 | QU Yongshui, LI Li, WEI Quanyuan, et al. One-pot conversion of disaccharide into 5-hydroxymethylfurfural catalyzed by imidazole ionic liquid[J]. Scientific Reports, 2016, 6: 26067. |
38 | ZHAO Pingping, ZHANG Yunyun, WANG Yong, et al. Conversion of glucose into 5-hydroxymethylfurfural catalyzed by acid-base bifunctional heteropolyacid-based ionic hybrids[J]. Green Chemistry, 2018, 20: 1551-1559. |
39 | SUN Zhong, CHENG Mingxing, LI Huacheng, et al. One-pot depolymerization of cellulose into glucose and levulinic acid by heteropolyacid ionic liquid catalysis[J]. RSC Advances, 2012, 2(24): 9058-9065. |
40 | SONG Changhua, LIU Sijie, PENG Xinwen, et al. Catalytic conversion of carbohydrates to levulinate ester over heteropolyanion-based ionic liquids[J]. ChemSusChem, 2016, 9: 3307-3316. |
41 | LI Hu, HE Xudong, ZHANG Qiuyun, et al. Polymeric ionic hybrid as solid acid catalyst for the selective conversion of fructose and glucose to 5-hydroxymethylfurfural[J]. Energy Technology, 2013, 1(2/3): 151-156. |
42 | LIU Wentao, WANG Yanfang, LI Wei, et al. Polyethylene glycol-400-functionalized dicationic acidic ionic liquids for highly efficient conversion of fructose into 5-hydroxymethylfurfural[J]. Catalysis Letters, 2015, 145(4): 1080-1088. |
43 | 牛牧歌, 侯玉翠, 任树行, 等. 含钒催化剂作用下生物质选择性氧化制备甲酸[J]. 科学通报, 2015, 60(16): 21-29. |
NIU Muge, HOU Yucui, REN Shuhang, et al. Catalytic oxidation of biomass to formic acid in aqueous solutions using vanadium-containing catalysts[J]. Chinese Science Bulletin, 2015, 60(16): 21-29. | |
44 | XU Jilei, ZHANG Hongye, ZHAO Yanfei, et al. Heteropolyanion-based ionic liquids catalysed conversion of cellulose into formic acid without any additives[J]. Green Chemistry, 2014, 16: 4931-4935. |
45 | LI Kaixin, BAI Linlu, AMANIAMPONG Prince Nana, et al. One-pot transformation of cellobiose to formic acid and levulinic acid over ionic-liquid-based polyoxometalate hybrids[J]. ChemSusChem, 2014, 7(9): 2670-2677. |
46 | DE GREGORIO Gilbert F, PRADO Raquel, VRIAMONT Charles, et al. Oxidative depolymerization of lignin using a novel polyoxometalate-protic ionic liquid system[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(11): 6031-6036. |
47 | SHI Nan, LIU Dong, HUANG Qiang, et al. Product-oriented decomposition of lignocellulose catalyzed by novel polyoxometalates-ionic liquid mixture[J]. Bioresource Technology, 2019, 283: 174-183. |
48 | CAI Zhenping, LONG Jinxing, LI Yingwen, et al. Selective production of diethyl maleate via oxidative cleavage of lignin aromatic unit[J]. Chem., 2019, 5: 2365-2377. |
49 | LENG Yan, WANG Jun, ZHU Dunru, et al. Heteropolyanion-based ionic liquids: reaction-induced self-separation catalysts for esterification[J]. Angewandte Chemie International Edition, 2010, 121(1): 174-177. |
50 | ZHEN Bin, LI Hansheng, JIAO Qingze, et al. SiW12O40-based ionic liquid catalysts: catalytic esterification of oleic acid for biodiesel production[J]. Industrial & Engineering Chemistry Research, 2012, 51(31): 10374-10380. |
51 | HAN Xiaoxiang, HE Yanfei, HUNG Chin Te, et al. Efficient and reusable polyoxometalate-based sulfonated ionic liquid catalysts for palmitic acid esterification to biodiesel[J]. Chemical Engineering Science, 2013, 104: 64-72. |
52 | RAFIEE Ezzat, EAVANI Sara. A new organic–inorganic hybrid ionic liquid polyoxometalate for biodiesel production[J]. Journal of Molecular Liquids, 2014, 199: 96-101. |
53 | WU Zuowang, CHEN Chong, WANG Lei, et al. Magnetic material grafted poly (phosphotungstate-based acidic ionic liquid) as efficient and recyclable catalyst for esterification of oleic acid[J]. Industrial & Engineering Chemistry Research, 2016, 55: 1833-1842. |
54 | LIN Lu, WANG Rui. Chlorella biodiesel preparation catalyzed by heteropolyanion-based ionic liquid[J]. Petroleum & Coal, 2014, 56(2): 201-205. |
55 | LI Kaixin, BAI Linlu, YANG Yanhui, et al. Kinetics of ionic liquid-heteropolyanion salts catalyzed transesterification of oleic acid methyl ester: a study by sequential method[J]. Catalysis Today, 2014, 233: 155-161. |
56 | YUAN Bin, XIE Congxia, YU Fengli, et al. A novel Brönsted-Lewis acidic heteropoly organic-inorganic salt: preparation and catalysis for rosin dimerization[J]. Springerplus, 2016, 5(1): 460. |
57 | YUAN Bing, WANG Zhilei, YUE Xudong, et al. Biomass high energy density fuel transformed from α-pinene catalyzed by Brønsted-Lewis acidic heteropoly inorganic-organic salt[J]. Renewable Energy, 2018, 123: 218-226. |
58 | CHEN Xiaoli, SOUVANHTHONG Bouasavanh, WANG Hang, et al. Polyoxometalate-based ionic liquid as thermoregulated and environmentally friendly catalyst for starch oxidation[J]. Applied Catalysis B: Environmental, 2013, 138(28): 161-166. |
59 | 姚加, 王冠淇, 陈航, 等. 螯合型离子液体:合成、性质以及应用[J]. 化工学报, 2018, 69(1): 203-217. |
YAO Jia, WANG Guanqi, CHEN Hang, et al. Chelate ionic liquids: synthesis, properties and applications[J]. CIESC Journal, 2018, 69(1): 203-217. | |
60 | WANG Fenfen, WEN Yi, FANG Yanxiong, et al. Synergistic production of methyl lactate from carbohydrates using an ionic liquid functionalized Sn-containing catalyst[J]. ChemCatChem, 2018, 10(18): 4154-4161. |
61 | HU Jinghui, HU Yifan, MAO Jianyong, et al. A cobalt Schiff base with ionic substituents on the ligand as an efficient catalyst for the oxidation of 4-methyl guaiacol to vanillin[J]. Green Chemistry, 2012, 14(10): 2894-2898. |
62 | LI Ji, PENG Xiao, LUO Meng, et al. Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted-Lewis acidic ionic liquid[J]. Applied Energy, 2014, 115: 438-444. |
63 | LI Hu, ZHANG Qiuyun, LIU Xiaofang, et al. Immobilizing Cr3+ with SO3H-functionalized solid polymeric ionic liquids as efficient and reusable catalysts for selective transformation of carbohydrates into 5-hydroxymethylfurfural[J]. Bioresoure Technology, 2013, 144: 21-27. |
64 | XIE Wenlei, WAN Fei. Biodiesel production from acidic oils using polyoxometalate-based sulfonated ionic liquids functionalized metal-organic frameworks[J]. Catalysis Letters, 2019, 149: 2916-2929. |
65 | XIE Wenlei, WAN Fei. Immobilization of polyoxometalate-based sulfonated ionic liquids on UiO-66-2COOH metal-organic frameworks for biodiesel production via one-pot transesterification-esterification of acidic vegetable oils[J]. Chemical Engineering Journal, 2019, 365: 40-50. |
66 | KIM Dong Woo, PARK Kyung Ah, KIM Min Ji, et al. Synthesis of glycerol carbonate from urea and glycerol using polymer-supported metal containing ionic liquid catalysts[J]. Applied Catalysis A: General, 2014, 473: 31-40. |
[1] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[2] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[3] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[4] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[5] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[6] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[7] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[8] | 王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545. |
[9] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[10] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[11] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[12] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[13] | 邢献军, 罗甜, 卜玉蒸, 马培勇. H3PO4活化核桃壳制备活性炭及在Cr(Ⅵ)吸附中的应用[J]. 化工进展, 2023, 42(3): 1527-1539. |
[14] | 郑云武, 裴涛, 李冬华, 王继大, 李继容, 郑志锋. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
[15] | 宋叶, 陈玉卓, 宋云彩, 冯杰. 有机固废合成气原位净化催化剂设计及反应器分析[J]. 化工进展, 2023, 42(3): 1383-1396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |