1 | 李垒,韩晓霞, 陈利粉, 等. 邻苯二酚环境标准和分析标准研究[J]. 环境科学与管理, 2013, 38(12): 161-165. | 1 | LI Lei, HAN Xiaoxia, CHEN Lifen, et al. Study on environmental standards and analytical standards for catechol[J]. Environmental Science and Management, 2013, 38(12): 161-165. | 2 | LAI Xuelei, WICHERS H J, SOLER L M, et al. Structure and function of human tyrosinase and tyrosinase-related proteins[J]. Chemistry, 2017, 24(1): 47-55. | 3 | 赵希荣, 李松林. 酪氨酸酶在壳聚糖生物改性中的应用[J]. 化工进展, 2011, 30(11): 2509-2516. | 3 | ZHAO Xirong, LI Songlin. Application of tyrosinase in chitosan biomodification[J]. Chemical Industry and Engineering Progress, 2011, 30(11): 2509-2516. | 4 | BRINCE P K, SIVA R K V, SHIV G S. Highly sensitive electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire based interface for label free biosensing[J]. Procedia Technology, 2017, 27: 217-218. | 5 | Youngho WEE, PARK Seunghwan, KWON Younghyeon, et al. Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds[J]. Biosensors and Bioelectronics, 2019, 132: 279-285. | 6 | FATHY S A, ABDELHAMMID F F, NEMR A E, et al. Tyrosinase biosensor based on multiwall carbon nanotubes-titanium oxide nanocomposite for catechol determination[J]. Desalination and Water Treatment, 2018, 130: 98-108. | 7 | DE S, MOHANTY S, NAYAK S K. Structure-property relationship of layered metal oxide phosphonate/chitosan nanohybrids for transducer in biosensing device[J]. Journal of Materials Engineering and Performance, 2015, 24(1): 114-127. | 8 | TURKY A O, BARHOUM A, RASHAD M M, et al. Enhanced the structure and optical properties for ZnO/PVP nanofibers fabricated via electrospinning technique[J]. Journal of Materials Science Materials in Electronics, 2017, 28: 17526-17532. | 9 | ZHONG Fucai, ZHANG Yongcai, WANG Linlin, et al. Electrospun zinc oxide nanospheres for ultrasensitive room-temperature gas sensors[J]. Optoelectronics Letters, 2018, 79(4): 11-13. | 10 | AHMAD M, PAN C F, LUO Z X, et al. A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor[J]. The Journal of Physical Chemistry C, 2010, 114(20): 9308-9313. | 11 | ZHOU Yu, WANG Lei, YE Zhizhen, et al. Synthesis of ZnO micro-pompons by soft template-directed wet chemical method and their application in electrochemical biosensors[J]. Electrochimica Acta, 2014, 115(3): 277-282. | 12 | HADDAOUI M, RAOUAFI N. Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/SPCE biosensor for the detection of ppb levels of herbicide[J]. Sensors and Actuators B: Chemical, 2015, 219: 171-178. | 13 | ZAMFIR L G, ROTARIU L, BALA C. Sensing of sulfhydryl based compounds by a simple electrochemical approach[J]. Sensors and Actuators B: Chemical, 2015, 206: 65-73. | 14 | LEI Yang, LUO Ning, YAN Xiaoqin, et al. A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection[J]. Nanoscale, 2012, 4: 3438-3443. | 15 | IKEHATA K, NICELL J A. Characterization of tyrosinase for the treatment of aqueous phenols[J]. Bioresource Technology, 2000, 74(3): 191-199. | 16 | ZHOU Xiaohong, LIU Lanhua, BAI Xue, et al. A reduced graphene oxide based biosensor for high-sensitive detection of phenols in water samples[J]. Sensors and Actuators B: Chemical, 2013, 181: 661-667. | 17 | CANTONE S, FERRARIO V, CORICI L, et al. Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods[J]. Chemical Society Reviews, 2013, 42(15): 6262. | 18 | CABAJ J, JEDRYCHOWSKA A, SWIST A, et al. Tyrosinase biosensor for antioxidants based on semiconducting polymer support[J]. Electroanalysis, 2016, 28(6): 1383-1390. | 19 | MAIKAP A, MUKHERJEE K, MONDAL B, et al. Zinc oxide thin film based nonenzymatic electrochemical sensor for the detection of trace level catechol[J]. RSC Advances, 2016, 6(69): 64611-64616. | 20 | RINKY S, SAMPATHKUMAR P, VADALIVSS S, et al. Ultra-sensitive phenol sensor based on overcoming surface fouling ofreduced graphene oxide-zinc oxide composite electrode[J]. Journal of Electroanalytical Chemistry, 2017, 785: 26-32. | 21 | SANCHEZPANIAGUA M P L, LOPEZRUIZ B R. Electrochemical biosensor based on ionic liquid polymeric microparticles. An analytical platform for catechol[J]. Microchemical Journal, 2018, 138: 173-179. | 22 | MARIA D F A, RICARDOAUGUSTO M D S C, FILIPE S D C, et al. Electrochemical enzymatic fenitrothion sensor based on a tyrosinase/poly(2-hydroxybenzamide)-modified graphite electrode[J]. Analytical Biochemistry, 2018, 553: 15-23. | 23 | 谷保祥, 王喜英, 乔明晓, 等. 基于纳米结构氧化锌的水体酚类污染监测研究[J]. 传感技术学报, 2014, 27(4): 421-425. | 23 | GU Baoxiang, WANG Xiying, QIAO Mingxiao, et al. Monitoring of phenolic pollution in water based on nanostructured zinc oxide[J]. Journal of Sensing Technology, 2014, 27 (4): 421-425. | 24 | RIZWAN W, NAUSHAD A, MANAWWER A, et al. Nanorods of ZnO: an effective hydrazine sensor and their chemicalproperties[J]. Vacuum, 2019, 165: 290-296. | 25 | SANDEEP S, SANTHOSH A S, SWAMY N K, et al. Detection of catechol using a biosensor based on biosynthesized silver nanoparticles and polyphenol oxidase enzymes[J]. Portugaliae Electrochimica Acta, 2019, 37(4): 257-270. |
|