1 | 陈家庆, 李汉勇, 常俊英, 等. 原油电脱水(脱盐)的电场设计及关键技术[J]. 石油机械, 2007, 35(1): 53-58. |
1 | CHEN Jiaqing, LI Hanyong, CHANG Junying, et al. Electric field design and key technologies for electric dehydration (desalting) of crude oil[J]. China Petroleum Machinery, 2007, 35(1): 53-58. |
2 | KRESTA S M. Advances in industrial mixing[M]. New Jersey: John Wiley & Sons Inc., 2016: 56-57. |
3 | KUKUKOVA A, AUBIN J, KRESTA S M. A new definition of mixing and segregation: three dimensions of a key process variable[J]. Chemical Engineering Research and Design, 2009, 87(4): 633-647. |
4 | HARNBY N. Mixing in the process industries[M]. 2nd ed. Oxford: Butterworth-Heinemann Ltd., 1997: 17. |
5 | 纪永波, 薛登存, 张国栋, 等. 高含盐重质原油脱盐工艺优化[J]. 油气田地面工程, 2016, 35(2): 36-41. |
5 | JI Yongbo, XUE Dengcun, ZHANG Guodong, et al. Optimization of high-salt heavy crude oil desalting process[J]. Oil-Gas Field Surface Engineering, 2016, 35(2): 36-41. |
6 | HINZE J O. Fundamentals of the hydrodynamic mechanism of splitting in dispersions processes[J]. AIChE Journal, 1955, 1(3): 289-295. |
7 | GRACE H P. Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices in such systems[J]. Chemical Engineering Communications, 1982, 14(3/4/5/6): 225-277. |
8 | PAUL E L. Handbook of industrial mixing: science and practice[M]. New Jersey: John Wiley & Sons Inc., 2004: 719. |
9 | RUEGER P E, CALABRESE R V. Dispersion of water into oil in a rotor-stator mixer. Part 1: drop breakup in dilute systems[J]. Chemical Engineering Research and Design, 2013, 91(11): 2122-2133. |
10 | AICHELE C P, CHAPMAN W G, RHYNE L D, et al. Characterization of water-in-crude-oil emulsions in a complex shear field[J]. Experimental Thermal and Fluid Science, 2014, 53: 190-196. |
11 | WANG Wei, CHENG Wei, DUAN Jimiao, et al. Effect of dispersed holdup on drop size distribution in oil-water dispersions: experimental observations and population balance modeling[J]. Chemical Engineering Science, 2014, 105: 22-31. |
12 | LIU Nanan, WANG Wei, TIAN Yunya, et al. Experimental study and numerical model development for drop size distribution in oil-water dispersions with nonionic surfactant Tween 80[J]. Experimental Thermal and Fluid Science, 2017: 89: 153-165. |
13 | 华自强. 工程热力学[M]. 4版. 北京: 高等教育出版社, 2009: 135-136. |
13 | HUA Ziqiang. Engineering thermodynamics[M]. 4nd ed. Beijing: High Education Press, 2009: 135-136. |
14 | PERCY J S, SLEICHER C A. Drop breakup in the flow of immiscible liquids through an orifice in a pipe[J]. AIChE Journal, 1983, 29(1): 161-164. |
15 | DAVIES J T. Drop sizes of emulsions related to turbulent energy dissipation rates[J]. Chemical Engineering Science, 1985, 40(5): 839-842. |
16 | ZANDE M J VAN DER, MUNTINGA J H, BROEK W VAN DER. Emulsification of production fluids in the choke valve[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA: Society of Petroleum Engineers, 1998: 525-532. |
17 | ZANDE M J VAN DER, HEUVEN K R VAN, MUNTINGA J H, et al. Effect of flow through a choke valve on emulsion stability[C]//SPE Annual Technical Conference and Exhibition. Houston, Texas, USA: Society of Petroleum Engineers, 1999: 1-8. |
18 | JASSEN P H, NOIK C, DALMAZZONE C. Emulsion formation in a model choke-valve[C]//SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA: Society of Petroleum Engineers, 2001: 1-12. |
19 | GALINAT S, MASBERNAT O, GUIRAUD P, et al. Drop break-up in turbulent pipe flow downstream of a restriction[J]. Chemical Engineering Science, 2005, 60(23): 6511-6528. |
20 | 程玉雪, 陈家庆, 刘美丽, 等. 孔板式节流元件后油滴剪切破碎的实验测试研究[J]. 北京石油化工学院学报, 2018, 26(1): 14-21. |
20 | CHENG Yuxue, CHENG Jiaqing, LIU Meili, et al. Experimental study on shear breakup of oil drop after orifice throttle element[J]. Journal of Beijing Institute of Petrochemical Technology, 2018, 26(1): 14-21. |
21 | 姬宜朋, 米彤, 胡义, 等. 基于实验的孔板节流后分散相粒径估值模型研究[J]. 高校化学工程学报, 2018, 32(6): 86-93. |
21 | JI Yipeng, MI Tong, HU Yi, et al. Experimental study on modeling of dispersed phase droplet size after orifice plate throttling[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 86-93. |
22 | FOSSEN M, HEINER S. Experimental study of the relative effect of pressure drop and flow rate on the droplet size downstream a pipe restriction[J]. Journal of Dispersion Science and Technology, 2016, 38(6): 826-831. |
23 | PAOLINELLI L D, RASHEDI A, YAO J. Characterization of droplet sizes in large scale oil-water flow downstream from a globe valve[J]. International Journal of Multiphase Flow, 2018, 99: 132-150. |
24 | SILVA F S, MEDRONHO R A, BARCA L F. Experimental study of water droplet break up in water in oil dispersions using an apparatus that produces localized pressure drops[J]. Oil & Gas Science and Technology: Revue d’IFP Energies nouvelles, 2019, 74(1): 1-11. |
25 | MITRE J F, LAGE P L C, SOUZA M A, et al. Droplet breakage and coalescence models for the flow of water-in-oil emulsions through a valve-like element[J]. Chemical Engineering Research and Design, 2014, 92(11): 2493-2508. |
26 | FAVERO J L, Silva L F L R, Lage P L C. Modeling and simulation of mixing in water-in-oil emulsion flow through a valve-like element using a population balance model[J]. Computers & Chemical Engineering, 2015, 75(6): 155-170. |
27 | ARYAFARD E, FARSI M, RAHIMPOUR M R. Modeling and simulation of crude oil desalting in an industrial plant considering mixing valve and electrostatic drum[J]. Chemical Engineering and Processing: Process Intensification, 2015, 95: 383-389. |
28 | ABIEV R S, VASILEV M P. Pulsating flow type apparatus: energy dissipation rate and droplets dispersion[J]. Chemical Engineering Research & Design, 2018, 137: 329-349. |
29 | VASILEV M P, ABIEV R S. Turbulent droplets dispersion in a pulsating flow type apparatus new type of static disperser[J]. Chemical Engineering Journal, 2018, 349: 646-661. |
30 | ABIEV R S. New concept of energy-efficient and resource-saving apparatuses for mixing and conjugated processes[C]//Proceedings of 14th European Conferences on Mixing, 2012: 13-18. |
31 | MIDDLEMAN S. Drop size distributions produced by turbulent pipe flow of immiscible fluids through a static mixer[J]. Industrial & Engineering Chemistry Process Design and Development, 1974, 13(1): 78-83. |
32 | HASS P A. Turbulent dispersion of aqueous drops in organic liquids[J]. AIChE Journal, 1987, 33(6): 987-995. |
33 | BERKMAN P D, CALABRESE R V. Dispersion of viscous liquids by turbulent flow in a static mixer[J]. AIChE Journal, 1988, 34(4): 602-609. |
34 | JAWORSKI Z, PIANKO-OPRYCH P. Two-phase laminar flow simulations in a Kenics static mixer: standard Eulerian and Lagrangian approaches[J]. Chemical Engineering Research & Design, 2002, 80(8): 910-916. |
35 | JAWORSKI Z, PIANKO-OPRYCH P, MARCHISIO D L, et al. CFD modelling of turbulent drop breakage in a Kenics static mixer and comparison with experimental data[J]. Chemical Engineering Research & Design, 2007, 85(5): 753-759. |
36 | JAWORSKI Z, MURASIEWICZ H. Les and Urans modelling of turbulent liquid-liquid flow in a static mixer: turbulent kinetic energy and turbulence dissipation rate[J]. Chemical Papers, 2010, 64(2): 182-192. |
37 | JAWORSKI Z, MURASIEWICZ H. Numerical and experimental studies of liquid-liquid mixing in a Kenics static mixer[C]//14th European Conference on Mixing. Portland Warsaw: European Federation of Chemical Engineering, 2012: 181-186. |
38 | HADDADI M M, HOSSEINI S H, RASHTCHIAN D, et al. CFD modeling of immiscible liquids turbulent dispersion in Kenics static mixers: focusing on droplet behavior[J]. Chinese Journal of Chemical Engineering, 2020, 28(2): 348-361.. |
39 | LEGRAND J, MORANCAIS P, CARNELLE G. Liquid-liquid dispersion in an SMX-Sulzer static mixer[J]. Chemical Engineering Research and Design, 2001, 79(8): 949-956. |
40 | DAS P K, LEGRAND J, MORANCAIS P, et al. Drop breakage model in static mixers at low and intermediate Reynolds number[J]. Chemical Engineering Science, 2005, 60(1): 231-238. |
41 | BAUMANN A, JEELANI S A K, HOLENSTEIN B, et al. Flow regimes and drop break-up in SMX and packed bed static mixers[J]. Chemical Engineering Science, 2012, 73: 354-365. |
42 | CHABANON E, SHEIBAT-OTHMANS N, MDERE O, et al. Drop size distribution monitoring of oil-in-water emulsions in SMX+ static mixers: effect of operating and geometrical conditions[J]. International Journal of Multiphase Flow, 2017, 92: 61-69. |
43 | LOBRY E, THERON F, GOURDON C, et al. Turbulent liquid–liquid dispersion in SMV static mixer at high dispersed phase concentration[J]. Chemical Engineering Science, 2011, 66(23): 5762-5774. |
44 | THERON F, SAUZE N. Comparison between three static mixers for emulsification in turbulent flow[J]. International Journal of Multiphase Flow, 2011, 37(5): 488-500. |
45 | SIDDIQUI S W. The effect of oils, low molecular weight emulsifiers and hydrodynamics on oil-in-water emulsification in confined impinging jet mixer[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443: 8-18. |
46 | TSAOULIDIS D, ANGELI P. Liquid-liquid dispersions in intensified impinging-jets cells[J]. Chemical Engineering Science, 2017, 171: 149-159. |
47 | WARREN K W, SAMS G W, NAKAYAMA T. Electrostatic fields: essential tools for desalting[C]//AIChE Spring Meeting. New Orleans, Louisiana, USA: American Institute of Chemical Engineers, 1997. |
48 | LEE B S, CHO H J, LEE J G, et al. Drop formation via breakup of a liquid bridge in an AC electric field[J]. Journal of Colloid & Interface Science, 2006, 302(1): 294-307. |
49 | ADAMIAK K, FLORYAN J M. Dynamics of water droplet distortion and break-up in a uniform electric field[J]. IEEE Transactions on Industry Applications, 2010, 47(6): 2374-2383. |
50 | KARYAPPA R, DESHMUKH S, THAOKAR R. Breakup of a conducting drop in a uniform electric field[J]. Journal of Fluid Mechanics, 2014, 754: 550-589. |
51 | GUO Changhui, HE Limin, XIN Yingchun. Deformation and breakup of aqueous drops in viscous oil under a uniform AC electric field[J]. Journal of Electrostatics, 2015, 77: 27-34. |
52 | YAN Haipeng, HE Limin, LUO Xiaoming, et al. Investigation on transient oscillation of droplet deformation before conical breakup under alternating current electric field[J]. Langmuir, 2015, 31(30): 8275-8283. |
53 | LUO Xiaoming, YAN Haipeng, HUANG Xin, et al. Breakup characteristics of aqueous droplet with surfactant in oil under direct current electric field[J]. Journal of Colloid and Interface Science, 2017, 505: 460-466. |
54 | FANG Fang, ZHANG Na, LIU Kun. Hydrodynamic and electrodynamic flow mixing in a novel total glass chip mixer with streamline herringbone pattern[J]. Microfluidics and Nanofluidics, 2014, 18(5/6): 887-895. |
55 | MOCTAR A O EL, AUBRY N, BATTON J. Electro-hydrodynamic micro-fluidic mixer[J]. Lab on a Chip, 2003, 3(4): 273-280. |
56 | LEE C Y, CHANG C L, WANG Y N, et al. Microfluidic mixing: a review[J]. International Journal of Molecular Sciences, 2011, 12(5): 3263-3287. |
57 | WINSLOW D. Adjustable homogenizer device: US610614[P]. 2000-08-22. |
58 | 刘建春, 王洪福, 张跃文. 一种大型化油水混合阀: CN201149103[P]. 2008-11-12. |
58 | LIU Jianchun, WANG Hongfu, ZHANG Yuewen. A large chemical oil-water mixing valve: CN201149103[P]. 2008-11-12. |
59 | 刘建春, 王晓勇. 一种新型高速电脱盐混合阀: CN201517636[P]. 2010-06-30. |
59 | LIU Jianchun, WANG Xiaoyong. A novel high-speed electric desalination mixing valve: CN201517636[P]. 2010-06-30. |
60 | ANEKAL S G. Mixing method and system for increased coalescence rates in a desalter: US8815068[P]. 2014-08-26. |
61 | 顾一天. 采用螺旋型静态混合器提高原油脱盐率[J]. 石油炼制与化工, 1985(10): 56. |
61 | GU Yitian. Adopting spiral static mixer to improve crude oil desalting rate[J]. Petroleum Processing and Petrochemicals, 1985(10): 56. |
62 | 李志强. 静态混合器在原油电脱盐工艺中的应用[J]. 石油炼制与化工, 1985(12): 23-25. |
62 | LI Zhiqiang. Application of static mixer in crude oil desalting process petroleum[J]. Processing and Petrochemicals, 1985(12): 23-25. |
63 | 蔡援建. 脱盐装置工艺技术改造后的操作优化[J]. 辽宁化工, 2005, 34(10): 445-448. |
63 | CAI Yuanjian. Operational optimization of desalting plant process technology transformation[J]. Liaoning Chemical Industry, 2005, 34(10): 445-448. |
64 | GOLDHAMMER B P, WEBER C H, YEUNG T W. 原油掺混、处理和脱盐技术的最新进展[J]. 中外能源, 2010, 15(10): 73-77. |
64 | GOLDHAMMER B P, WEBER C H, YEUNG T W. Recent advances in crude oil blending, processing and desalting technologies[J]. Sino-Global Energy, 2010, 15(10): 73-77. |
65 | 吴雨, 张力钧, 宋忠俊. 静态混合器在石油化工中的应用[J]. 天然气与石油, 2014, 32(3): 23-26. |
65 | WU Yu, ZHANG Lijun, SONG Zhongjun. Application of static mixer in petrochemical industry[J]. Natural Gas and Oil, 2014, 32(3): 23-26. |
66 | FORERO J, DUQUE J, DíAZ J, et al. New contact system in crude oil desalting process[J]. CT&F-Ciencia, 2001, 2(2): 81-91. |
67 | GHOSH M, LAWSON K H, SINGH V. Sequential mixing system for improved desalting: US2015/0144457[P]. 2015-05-28. |
68 | HUSSAIN M, GHOSH M, LAWSON K H, et al. Sequential mixing system for improved desalting: US10392568[P]. 2019-08-27. |
69 | GLANVILE R W. Static mixer: US5869828[P]. 1998-12-24. |
70 | ALHAJARI N A, ABDULGADER M A. Static mixer technology[C]//SPE Middle East Oil & Gas Show and Conference. Manama, Kingdom of Bahrain: Society of Petroleum Engineers, 2017: 1-10. |
71 | SEMEN S G, GENNADY B G, ALEXANDER V G, et al. Apparatus for dehydration of petroleum and its product: SU1018679[P]. 1983-05-23. |
72 | 戴人利. 苏联电脱盐装置的改进[J]. 石油化工腐蚀与防护, 1985(4): 87-95. |
72 | DAI Renli. Improvement of soviet electric desalting device[J]. Corrosion & Protection in Petrochemical Industry, 1985(4): 87-95. |
73 | SAMS G W, LEE J M. System and method of delivering dilution water droplets within an oil-and-water stream: US9932528[P]. 2018-04-03. |
74 | LINGA H, ONSRUD G, SAGLI J R. Mixing valve with adjustable regulating elements and central chamber: US5971604[P]. 1999-10-26. |
75 | NLSEN F P, LINGA H, FANTOFT R. Apparatus and method for mixing fluids: EP1294473[P]. 2001-06-29. |
76 | BOUDI A A, LINGA H, AL-JOHAR Z, et al. New mixer system enhances Saudi Aramco GOSP crude-water separation performance[C]//SPE Annual Technical Conference and Exhibition. Denver, Colorado, USA: Society of Petroleum Engineers, 2011: 1-11. |
77 | MCPHERSON R, SABEY J. Innovative use of mixer design for efficient brine and produced water handling[C]//SPE Kuwait Oil and Gas Show and Conference. Mishref, Kuwait: Society of Petroleum Engineers, 2015: 1-9. |
78 | LIU Y, GILBERT G N, BOUL J C, et al. Mixing assembly:US2019/0134576[P]. 2019-05-09. |
79 | GERSHUNI S S, GRIBANOV A V, LAPIGA E Y, et al. Device for electrical working of water and oil emulsion: SU1058576[P]. 1983-12-07. |
80 | SHVETSOV V N, YUNUSOV A A, MUKHAMETZYANOV A K, et al. Apparatus for desalting of crude oil emulsions: SU1101255[P]. 1984-07-07. |
81 | PRESTRIDGE F L, JOHNSON B C. Electrostatic mixer/separator: US4606801[P]. 1986-08-19. |
82 | WARREN K W. Desalting heavy crude oil by counter-flow electrostatic mixing[C]//SPE Latin America Petroleum Engineering Conference. Rio de Janeiro, Brazil: Society of Petroleum Engineers, 1990: 1-9. |
83 | TARANTSEV K V, TOKAREV D D. Mixer-electrocoalescent-re: RU2535863[P]. 2014-12-20. |
84 | TARANTSEV K V, KOROSTELEVA A V. Optimization of design of ejector-type mixer for producing fuel emulsions in an electric field[J]. Chemical and Petroleum Engineering, 2013, 49(3/4): 173-177. |
85 | TARANTSEV K V, PROSHIN I A. Development of a design for a mixer/electrocoalescing unit for production of water-in-oil emulsions by numerical methods[J]. Chemical and Petroleum Engineering, 2015, 51(3/4): 233-236. |