化工进展 ›› 2020, Vol. 39 ›› Issue (3): 906-915.DOI: 10.16085/j.issn.1000-6613.2019-0887
梁超余1(),王家堂1,苗鹤1,韩越1,冯祥1,叶伟强2,袁金良1()
收稿日期:
2019-05-31
出版日期:
2020-03-05
发布日期:
2020-04-03
通讯作者:
袁金良
作者简介:
梁超余(1996—),男,硕士研究生,研究方向为高温固体氧化物燃料电池多孔电极介尺度模拟。E-mail:基金资助:
Chaoyu LIANG1(),Jiatang WANG1,He MIAO1,Yue HAN1,Xiang FENG1,Weiqiang YE2,Jinliang YUAN1()
Received:
2019-05-31
Online:
2020-03-05
Published:
2020-04-03
Contact:
Jinliang YUAN
摘要:
高温固体氧化物燃料电池(SOFC)在可持续新能源领域具有广泛的研究与应用前景,多孔电极结构的本质特征是介尺度,这种特性对电极内物质传输和电池性能起着决定性作用。本文综述了应用于多孔电极结构的微尺度和介尺度的数值、物理研究方法以及介尺度耦合其他尺度的多尺度方法,分别讨论了各方法适用的研究内容、研究进展及其优缺点。通过分析得出,微尺度方法可精确模拟SOFC电极材料的微观特性,介尺度方法可重构复杂的电极微观结构、模拟三相反应,同时是研究电极微观结构和宏观模拟之间的重要桥梁,因此,介尺度与其他尺度方法的耦合可以较好地解决微观结构和多物理场耦合下的相互作用。在未来的研究中,降低介尺度及其耦合的多尺度方法的计算成本、发展先进的实验设备和可视化技术具有重要的研究潜力与价值。
中图分类号:
梁超余,王家堂,苗鹤,韩越,冯祥,叶伟强,袁金良. 高温固体氧化物燃料电池多孔电极结构介尺度研究方法[J]. 化工进展, 2020, 39(3): 906-915.
Chaoyu LIANG,Jiatang WANG,He MIAO,Yue HAN,Xiang FENG,Weiqiang YE,Jinliang YUAN. Review on the mesoscale research of porous electrode structure in SOFC[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 906-915.
1 | 朱新坚.中国燃料电池技术现状与展望[J].电池,2004,34(3):202-203. |
ZHU X J.Current situation and prospect of fuel cell technology in China[J].Battery Bimonthly,2004,34(3):202-203. | |
2 | 尹志新,吴冬强,许枭,等.SOFC阳极材料的研究现状与分析[J].电源技术,2012,36(7):1062-1064. |
YIN Z X,WU D Q,XU X,et al.Research status and analysis of SOFC anode materials[J].Chinese Journal of Power Sources,2012,36(7):1062-1064. | |
3 | ANDERSSON M,YUAN J,SUNDÉN B.Chemical reacting transport phenomena and multiscale models for SOFCs[J].Advanced Computational Methods and Experiments in Heat Transfer X,2008,61:69. |
4 | 李家玉,王宝轩,陈美娜.碳基固体氧化物燃料电池理论模拟概述[J].中国工程科学,2013,15(2):39-49. |
LI J Y,WANG B X,CHEN M N.Overview of theoretical simulation of carbon-based solid oxide fuel cells[J].Engineering Sciences,2013,15(2):39-49. | |
5 | ANDERSSON M,YUAN J,SUNDÉN B.Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells[J].Applied Energy,2010,87(5):1461-1476. |
6 | RYAN E M,MUKHERJEE P P.Mesoscale modeling in electrochemical devices—A critical perspective[J].Progress in Energy and Combustion Science,2019,71:118-142. |
7 | NI M,LEUNG M K H,LEUNG D Y C.Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes[J].Journal of Power Sources,2007,168(2):369-378. |
8 | YUAN J,SUNDÉN B.On continuum models for heat transfer in micro/nano-scale porous structures relevant for fuel cells[J].International Journal of Heat & Mass Transfer,2013,58(1/2):441-456. |
9 | PARFITT D,CHRONEOS A,KILNER J A,et al.Molecular dynamics study of oxygen diffusion in Pr2NiO4+δ[J].Physical Chemistry Chemical Physics,2010,12(25):6834-6836. |
10 | CHOI Y M,LIN M C,LIU M L.Computational study on the catalytic mechanism of oxygen reduction on La0.5Sr0.5MnOin solid oxide fuel cells[J].Angewandte Chemie,2010,38(47):7214-7219. |
11 | SHISHKIN M,ZIEGLER T.Hydrogen oxidation at the Ni/yttria-stabilized zirconia interface: a study based on density functional theory[J].The Journal of Physical Chemistry C,2010,114(25):11209-11214. |
12 | GALEA N M,LO J,ZIEGLER T.A DFT study on the removal of adsorbed sulfur from a nickel(111) surface: reducing anode poisoning[J].Journal of Catalysis,2009,263(2):380-389. |
13 | HWANG B,KWON H,KO J,et al.Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying[J].Applied Surface Science,2018,429:87-94. |
14 | HAN Z,YANG Z,HAN M.Comprehensive investigation of methane conversion over Ni(111) surface under a consistent DFT framework: implications for anti-coking of SOFC anodes[J].Applied Surface Science,2019,480:243-255. |
15 | CHOI S,YOO S,KIM J,et al.Highly efficient and robust cathode materials for low-temperature solid oxide fuel cells: PrBa0.5Sr0.5Co2-xFexO5+δ[J].Scientific Reports,2013,3:2426. |
16 | ROOHANDEH T,SAIEVAR-IRANIZAD E.A study on the formation and migration of oxygen vacancies in Ba0.5Sr0.5Co0.75Fe0.25O3-δ perovskite surfaces by first-principles modelling[J].Materials Chemistry and Physics,2019,226:371-377. |
17 | ALDER B J,WAINWRIGHT T E.Studies in molecular dynamics. Ⅰ. General method[J].The Journal of Chemical Physics,1959,31(2):459-466. |
18 | HERMET J,DUPÉ B,DEZANNEAU G.Simulations of REBaCo2O5.5 (REGd, La, Y) cathode materials through energy minimisation and molecular dynamics[J].Solid State Ionics,2012,216:50-53. |
19 | YOON M Y,JEONG S M,HWANG H J.Molecular dynamics simulation on oxide ion conduction of La-based perovskite oxides for SOFCs electrolyte[C]//Meeting Abstracts,The Electrochemical Society,2014. |
20 | LU H,DONG H,IQABL T,et al.Molecular dynamics simulations of the coke formation progress on the nickel-based anode of solid oxide fuel cells[J].International Communications in Heat & Mass Transfer,2018,91:40-47. |
21 | GALIN M,IVANOV-SCHITZ A,MAZO G.Molecular dynamics simulation of the structure and Ion transport in the Ce1–xGdxO2–δ|YSZ heterosystem[J].Crystallography Reports,2018,63(1):104-110. |
22 | XU J,SAKANOI R,HIGUCHI Y,et al.Molecular dynamics simulation of Ni nanoparticles sintering process in Ni/YSZ multi-nanoparticle system[J].The Journal of Physical Chemistry C,2013,117(19):9663-9672. |
23 | XU J,HIGUCHI Y,OZAWA N,et al.Parallel large-scale molecular dynamics simulation opens new perspective to clarify the effect of a porous structure on the sintering process of Ni/YSZ multiparticles[J].ACS Applied Materials & Interfaces,2017,9(37):31816-31824. |
24 | DUIN A C T VAN,MERINOV B V,JANG S S,et al.ReaxFF reactive force field for solid oxide fuel cell systems with application to oxygen ion transport in yttria-stabilized zirconia[J].The Journal of Physical Chemistry A,2008,112(14):3133-3140. |
25 | MERINOV B V,MUELLER J E,DUIN A C VAN,et al.ReaxFF reactive force-field modeling of the triple-phase boundary in a solid oxide fuel cell[J].Journal of Physical Chemistry Letters,2014,5(22):4039-4043. |
26 | LAI H Y,CHAN Y H,CHEN C K.Enhancement of ion conductivity for doped electrolytes in SOFC by MD modeling[J].Computational Materials Science,2018,144:265-272. |
27 | DUIN A C VAN,DASGUPTA S,LORANT F,et al.ReaxFF: a reactive force field for hydrocarbons[J].The Journal of Physical Chemistry A,2001,105(41):9396-9409. |
28 | LU H,HUA D,IQABL T,et al.Molecular dynamics simulations of the coke formation progress on the nickel-based anode of solid oxide fuel cells[J].International Communications in Heat and Mass Transfer,2018,91:40-47. |
29 | HATAE T,MATSUZAKI Y,YAMASHITA S,et al.Current density dependence of changes in the microstructure of SOFC anodes during electrochemical oxidation[J].Solid State Ionics,2009,180(23):1305-1310. |
30 | LIU S S,SAHA L C,ISKANDAROV A,et al.Atomic structure observations and reaction dynamics simulations on triple phase boundaries in solid-oxide fuel cells[J].Communications Chemistry,2019,2(1):48. |
31 | SHI Y,CHEN L,CAI N.Experimental characterization and mechanistic modeling of carbon monoxide fueled solid oxide fuel cell[J].Journal of Power Sources,2011,196(13):5526-5537. |
32 | LI J,LIU G,CROISET E.Two-dimensional mechanistic solid oxide fuel cell model with revised detailed methane reforming mechanism[J].Electrochimica Acta,2017,249:216-226. |
33 | LI J H.Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale[J].Engineering,2016,2(3):276-285. |
34 | RYAN E M,TARTAKOVSKY A M,RECKNAGLE K P,et al.Pore-scale modeling of the reactive transport of chromium in the cathode of a solid oxide fuel cell[J].Journal of Power Sources,2011,196(1):287-300. |
35 | LIU W N,XIN S,PEDERSON L R,et al.Effect of nickel-hosphorus interactions on structural integrity of anode-supported solid oxide fuel cells[J].Journal of Power Sources,2010,195(21):7140-7145. |
36 | KONNO A,IWAI H,SAITO M,et al.A corrugated mesoscale structure on electrode-electrolyte interface for enhancing cell performance in anode-supported SOFC[J].Journal of Power Sources,2011,196(18):7442-7449. |
37 | CRONIN J S,CHEN-WIEGART Y C K,WANG J,et al.Three-dimensional reconstruction and analysis of an entire solid oxide fuel cell by full-field transmission X-ray microscopy[J].Journal of Power Sources,2013,233(7):174-179. |
38 | SHIKAZONO N,KANNO D,MATSUZAKI K,et al.Numerical assessment of SOFC anode polarization based on three-dimensional model microstructure reconstructed from FIB-SEM images[J].Journal of the Electrochemical Society,2010,157(5):B665-B672. |
39 | BRUS G,IWAI H,MOZDZIERZ M,et al.Combining structural, electrochemical, and numerical studies to investigate the relation between microstructure and the stack performance[J].Journal of Applied Electrochemistry,2017 (1):1-11. |
40 | 王灵权.格子Boltzmann方法在多孔介质流中的多尺度应用研究[D].重庆:重庆大学,2017. |
WANG L Q.A research on the lattice boltzmann method for its application in multi-scale porous flows[D].Chongqing:Chongqing University,2017. | |
41 | CHEN S,DOOLEN G D.Lattice boltzmann method for fluid flows[J].Annual Review of Fluid Mechanics,1998,30(1):329-364. |
42 | SUZUE Y,SHIKAZONO N,KASAGI N.Micro modeling of solid oxide fuel cell anode based on stochastic reconstruction[J].Journal of Power Sources,2008,184(1):52-59. |
43 | PARADIS H,ANDERSSON M,SUNDÉN B.Modeling of mass and charge transport in a solid oxide fuel cell anode structure by a 3D lattice Boltzmann approach[J].Heat & Mass Transfer,2016,52(8):1529-1540. |
44 | ESPINOZA M,SUNDÉN B,ANDERSSON M,et al.Analysis of porosity and tortuosity in a 2D selected region of solid oxide fuel cell cathode using the lattice boltzmann method[J].ECS Transactions,2015,65(1):59-73. |
45 | YAN Z,HE A,HARA S,et al.Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: correlations between microstructures and electrochemical performances[J].Energy Conversion and Management,2019,190:1-13. |
46 | CHEN L,HE Y L,KANG Q,et al.Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes[J].Journal of Computational Physics,2013,255:83-105. |
47 | LUCY L B.A numerical approach to the testing of the fission hypothesis[J].Astrophys Journal,1977,82:1013-1024. |
48 | GINGOLD R A,MONAGHAN J J.Smoothed particle hydrodynamics: theory and application to non-spherical stars[J].Monthly Notices of the Royal Astronomical Society,1977,181(3):375-389. |
49 | MONAGHAN J,KOCHARYAN A.SPH simulation of multi-phase flow[J].Computer Physics Communications,1995,87(1/2):225-235. |
50 | RYAN E,AMON C.Modeling the species transport and reactions in an SOFC cathode using smoothed particle hydrodynamics[C]//ASME 2008 6th International Conference on Fuel Cell Science,Engineering and Technology. American Society of Mechanical Engineers,2008. |
51 | MONAGHAN J J,KAJTAR J B.SPH particle boundary forces for arbitrary boundaries[J].Computer Physics Communications,2009,180(10):1811-1820. |
52 | CUNDALL P A,STRACK O D.A discrete numerical model for granular assemblies[J].Geotechnique,1979,29(1):47-65. |
53 | SCHNEIDER L C R,MARTIN C L,BULTEL Y,et al.Discrete modelling of the electrochemical performance of SOFC electrodes[J].Electrochimica Acta,2006,52(1):314-324. |
54 | LICHTNER A,ROUSSEL D,RÖHRENS D,et al.Anisotropic sintering behavior of freeze-cast ceramics by optical dilatometry and discrete-element simulations[J].Acta Materialia,2018,155:343-349. |
55 | MARTIN C L,SCHNEIDER L C R,OLMOS L,et al.Discrete element modeling of metallic powder sintering[J].Scripta Materialia,2007,55(5):425-428. |
56 | LIU X,MARTIN C L,DELETTE G,et al.Microstructure of porous composite electrodes generated by the discrete element method[J].Journal of Power Sources,2011,196(4):2046-2054. |
57 | MARTIN C L,YAN Z,JAUFFRES D,et al.Sintered ceramics with controlled microstructures: numerical investigations with the discrete element method[J].Journal of Ceramic Society of Japan,2016,124(4):340-345. |
58 | YAN Z,HARA S,SHIKAZONO N.Effect of powder morphology on the microstructural characteristics of La0.6Sr0.4Co0.2Fe0.8O3 cathode: a kinetic monte carlo investigation[J].International Journal of Hydrogen Energy,2017,42(17):12601-12614. |
59 | YAN Z,HE A,HARA S,et al.Modeling of solid oxide fuel cell (SOFC) electrodes from fabrication to operation: microstructure optimizationvia artificial neural networks and multi-objective genetic algorithms[J].Energy Conversion and Management,2019,198:111916. |
60 | 任瑛,徐骥.蛋白质体系分子动力学模拟的前沿进展-从介科学角度重新审视[J].过程工程学报,2018,18(6):1126-1138. |
REN Y,XU J.Frontiers of molecular dynamics simulations of protein systems-reexamine from the mesoscience perspective[J].The Chinese Journal of Process Engineering,2018,18(6):1126-1138. | |
61 | WANG Y F,YUAN J,SUNDÉN B,et al.Coarse-grained molecular dynamics investigation of nanostructures and thermal properties of porous anode for solid oxide fuel cell[J].Journal of Power Sources,2014,254:209-217. |
62 | FU P,YAN M,ZENG M,et al.Sintering process simulation of a solid oxide fuel cell anode and its predicted thermophysical properties[J].Applied Thermal Engineering,2017,125:209-219. |
63 | MARRINK S J,JELGER R H,SERGE Y S,et al.The MARTINI force field: coarse grained model for biomolecular simulations[J].Journal of Physical Chemistry B,2007,111(27):7812. |
64 | KEVLAHAN N.Principles of multiscale modeling[J].Physics Today,2012,65(6):56-57. |
65 | KIM J H,LIU W K,LEE C.Multi-scale solid oxide fuel cell materials modeling[J].Computational Mechanics,2009,44(5):683-703. |
66 | XU H,DANG Z.Numerical investigation of coupled mass transport and electrochemical reactions in porous SOFC anode microstructure[J].International Journal of Heat and Mass Transfer,2017,109:1252-1260. |
67 | BIEBERLE A,GAUCKLER L J.State-space modeling of the anodic SOFC system Ni, H2-H2O|YSZ[J].Solid State Ionics,2002,146(1):23-41. |
68 | DANG Z,XU H.Pore scale investigation of gaseous mixture flow in porous anode of solid oxide fuel cell[J].Energy,2016,107:295-304. |
69 | TADA T.Full atomistic kinetic Monte Carlo with direct counting approach for ion dynamics in electrochemical cells[C]//Meeting Abstracts.The Electrochemical Society,2018. |
70 | AN H,KIM Y,SHIKAZONO N.Three-dimensional numerical simulation of solid oxide fuel cell cathode based on lattice Boltzmann method with sub-grid scale models[J].International Journal of Hydrogen Energy,2017,42(34):21886-21900. |
71 | FRAGKOPOULOS I S,THEODOROPOULOS C.Multi-scale modelling of electrochemically promoted systems[J].Electrochimica Acta,2014,150:232-244. |
72 | MASTROPASQUA L,DONAZZI A,CAMPANARI S.Development of a multiscale SOFC model and application to axially‐graded electrode design[J].Fuel Cells,2019,19(2):125-140. |
73 | HUANG Q A,MEI S Z,XU L F,et al.Degradation of metal-supported SOFC and one powerful investigation method: multi-scale modeling and simulation[J].Applied Mechanics and Materials,2011,110-116:3376-3381. |
[1] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[2] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[3] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[4] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[5] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[6] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[7] | 蒋博龙, 崔艳艳, 史顺杰, 常嘉城, 姜楠, 谭伟强. 过渡金属Co3O4/ZnO-ZIF氧还原催化剂Co/Zn-ZIF模板法制备及其产电性能[J]. 化工进展, 2023, 42(6): 3066-3076. |
[8] | 章凯, 金捍宇, 刘思宇, 王帅. 鼓泡流态化气泡间相互作用下相间传质过程的模拟[J]. 化工进展, 2023, 42(6): 2828-2835. |
[9] | 陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844. |
[10] | 马哲杰, 张文励, 赵炫凯, 李平. PEMFC阴极催化层氧传质阻力影响的研究进展[J]. 化工进展, 2023, 42(6): 2860-2873. |
[11] | 袁守正, 陈啸, 蒋鸣, 余亚雄, 周强. 气固下行床中壁面对介尺度曳力的影响规律[J]. 化工进展, 2023, 42(5): 2272-2281. |
[12] | 陈土杰, 毕可鑫, 邱彤, 吉旭, 戴一阳. 基于社区发现算法的复杂网络关键反应路线提取[J]. 化工进展, 2023, 42(2): 684-691. |
[13] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[14] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[15] | 高帷韬, 殷屺男, 涂自强, 龚繁, 李阳, 徐宏, 王诚, 毛宗强. 金属有机框架材料中的质子传导及其在质子交换膜中的应用[J]. 化工进展, 2022, 41(S1): 260-268. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |