1 | 李晓曼, 黄斌, 孙雯雯, 等. 类固醇雌激素环境行为研究进展[J]. 环境化学, 2014, 33(8): 1276-1286. | 1 | LI Xiaoman, HUANG Bin, SUN Wenwen, al at. Research progress on the environmental behavior of steroid estrogens [J]. Environmental Chemistry, 2014, 33(8): 1276-1286. | 2 | YU Weiwei, DU Banghao, YANG Lun, al at. Occurrence, sorption, and transformation of free and conjugated natural steroid estrogens in the environment [J]. Environmental Science and Pollution Research, 2019, 26(10): 9443-9468. | 3 | 余薇薇, 朱家悦, 陈垚, 等. 集约化养殖场中类固醇雌激素的环境行为与处理途径[J]. 环境工程, 2017, 35(3): 174-178. | 3 | YU Weiwei, ZHU Jiayue, CHEN Yao, et al. Research advances in environmental behavior and treatments of Steroid estrogens in intensive farm [J]. Environmental Engineering, 2017, 35(3): 174-178. | 4 | BILAL M, IQBAL H. Persistence and impact of steroidal estrogens on the environment and their laccase-assisted removal [J]. Science of the Total Environment, 2019, 690: 447-59. | 5 | 师博颖, 王智源, 刘俊杰, 等. 长江江苏段饮用水源地3种雌激素污染特征[J]. 环境科学学报, 2018, 38(3): 857-883. | 5 | SHI Boying, WANG Zhiyuan, LIU Junjie, al at. Pollution characteristics of three estrogens in drinking water sources in Jiangsu reach of the Yangtze River [J]. Acta Scientiae Circumstantiae, 2018, 38(3): 857-883. | 6 | 刘畅伶, 张文强, 单保庆. 珠江口典型河段内分泌干扰物的空间分布及风险评价[J]. 环境科学学报, 2018, 38(1): 115-124. | 6 | LIU Changling, ZHANG Wenqiang, SHAN Baoqin. Spatial distribution and risk assessment of endocrine disrupting chemicals in the typical station of Pearl River [J]. Acta Scientiae Circumstantiae, 2018, 38(1): 115-124. | 7 | SORNALINGAM K, MCDONAGH A, ZHOU J L. Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: progress and future challenges [J]. Science of the Total Environment, 2016, 550: 209-224. | 8 | ZHENG Wei, LI Xiaolin, YATES S R, al at. Anaerobic transformation kinetics and mechanism of steroid estrogenic hormones in dairy lagoon water [J]. Environmental Science & Technology, 2012, 46(10): 5471-5478. | 9 | CUNHA G D, SOUZA C B, BILA D M, et al. Insights into estrogenic activity removal using carbon nanotube electrochemical filter [J]. Science of the Total Environment, 2019, 678: 448-456. | 10 | 阚连宝, 刘泽. 纳米零价铁制备与应用的研究进展[J]. 环境科学与技术, 2019, 42(6): 215-223. | 10 | KAN Lianbao, LIU Ze. Research progress in preparation and application of nano-zero-valent iron [J]. Environmental Science & Technology, 2019, 42(6): 215-223. | 11 | ALI I, ALOTHMAN Z A, ALWARTHAN A. Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles [J]. Journal of Molecular Liquids, 2017, 241: 123-129. | 12 | JAROSOVA B, FILIP J, HILSCHEROVA K, et al. Can zero-valent iron nanoparticles remove waterborne estrogens? [J] Journal of Environmental Management, 2015, 150: 387-392. | 13 | 水质——铁的测定——邻菲啰啉分光光度法(试行): HJ/T 345─2007 [S].2007.Water quality—determination of iron—phenanthroline spectrophotometry (Trial): HJ/T 345─2007 [S]. 2007. | 14 | JHO E H, SINGHAL N, TURNER S. Fenton degradation of tetrachloroethene and hexachloroethane in Fe() catalyzed systems [J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 234-340. | 15 | 陈哲, 冯秀娟, 郑先坤, 等. 纳米零价铁改性技术及其在污染修复中的应用研究进展[J]. 现代化工, 2019, 39(7): 33-37. | 15 | CHEN Zhe, FENG Xiujuan, ZHENG Xianken, al at. Progress in modification technology of nanometer zero-valent iron and application in environmental remediation [J]. Modern Chemical Industry, 2019, 39(7): 33-37. | 16 | YIRSAW B D, MEGHARAJ M, CHEN Zuliang, al at. Environmental application and ecological significance of nano-zero valent iron [J]. Journal of Environmental Sciences, 2016, 44: 88-98. | 17 | GUAN Xiaohong, SUN Yuankui, QIN Hejie, al at. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994—2014) [J]. Water Research, 2015, 75: 224-248. | 18 | CHEN Lishuo, NI Rui, YUAN Tengjie, et al. Effects of green synthesis, magnetization, and regeneration on ciprofloxacin removal by bimetallic nZVI/Cu composites and insights of degradation mechanism [J]. Journal of Hazardous Materials, 2020, 382: 121008. | 19 | ZHAO X, LIU W, CAI Z, al at. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation [J]. Water Research, 2016, 100: 245-266. | 20 | ZHANG Weijun, GAO Hongyu, HE Juanjuan, et al. Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: optimization of operating conditions and degradation pathway [J]. Separation and Purification Technology, 2017, 172: 158-167. | 21 | ZHU Yanping, ZHU Runliang, XI Yunfei, al at. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review [J]. Applied Catalysis B: Environmental, 2019, 255: 117739. | 22 | 余薇薇, 杜邦昊, 张敏讷, 等. 环境中自由及结合态雌激素的酶降解转化研究进展[J]. 生物技术通报, 2019, 35(4): 151-162. | 22 | YU Weiwei, DU Banghao, ZHANG Minne, et al. A review on enzymatic degradation and transformation mechanisms of free and conjugated estrogens in the environment [J]. Biotechnology Bulletin, 2019, 35(4): 151-162. | 23 | 马立群, 李爽, 王雅珍, 等. 单电子转移活性自由基聚合研究进展[J]. 工程塑料应用, 2018, 46(10): 137-140. | 23 | MA Liqun, LI Shuang, WANG Yazhen, et al. Research progress of single electron transfer living radical polymerization [J]. Engineering Plastics Application, 2018, 46(10): 137-140. | 24 | DE LA CRUZ N, GIMéNEZ J, ESPLUGAS S, al at. Degradation of 32 emergent contaminants by UV and neutral photo-Fenton in domestic wastewater effluent previously treated by activated sludge [J]. Water Research, 2012, 46(6): 1947-1957. | 25 | KEHRER J P. The Haber-Weiss reaction and mechanisms of toxicity [J]. Toxicology, 2000, 149(1): 43-50. | 26 | LIU Airong, LIU Jing, PAN Bingcai, al at. Formation of lepidocrocite (γ-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water [J]. RSC Advances, 2014, 4(101): 57377-57382. | 27 | ROBERT M S, FRANCIS X M, DAVID J K, al at. Spectrometric identification of organic compounds [M]. USA: John Wiley & Sons, Inc., 2005. | 28 | 宋晓明. 农业土壤中类固醇雌激素的潜在风险与归趋机理研究[D]. 沈阳: 沈阳大学, 2018. | 28 | SONG Xiaoming. Study on potential risk and fate and transport mechanism of steroid estrogens in agricultural soil [D]. Shenyang: Shenyang University, 2018. | 29 | DU Penghui, CHANG Junjun, ZHAO He, et al. Sea-buckthorn-like MnO2 decorated titanate nanotubes with oxidation property and photocatalytic activity for enhanced degradation of 17β-estradiol under solar light [J]. ACS Applied Energy Materials, 2018, 1(5): 2123-2133. | 30 | DE VLEESCHOUWER F, SPEYBROECK V VAN, WAROQUIER M, al at. Electrophilicity and nucleophilicity index for radicals [J]. Organic Letters, 2007, 9(14): 2721-2724. | 31 | LIMPIYAKORN T, HOMKLIN S, ONG S K. Fate of estrogens and estrogenic potentials in sewerage systems [J]. Critical Reviews in Environmental Science and Technology, 2011, 41(13): 1231-1270. | 32 | FENG Xianghua, TU Jianfeng, DING Shimin, al at. Photodegradation of 17beta-estradiol in water by UV-vis/Fe(Ⅲ)/H2O2 system [J]. Journal of Hazardous Materials, 2005, 127(1/2/3): 129-133. | 33 | 王星皓. 锰(Ⅲ/Ⅳ)介导的氧化降解水中典型内分泌干扰物的机理研究[D]. 南京: 南京大学, 2017. | 33 | WANG Xinghao. Mechanism of manganese(Ⅲ/Ⅳ)mediated oxidative removal of typical endocrine disruptors in water [D]. Nanjing: Nanjing University, 2017. | 34 | QIN Chao, TROYA D, SHANG Chao, al at. Surface catalyzed oxidative oligomerization of 17β-estradiol by Fe3+-saturated montmorillonite [J]. Environmental Science & Technology, 2015, 49(2): 956-964. |
|