1 | ZHAO H W, ZHAO Y N, LIU M K, et al. Phosphorus modification to improve the hydrothermal stability of a Cu-SSZ-13 catalyst for selective reduction of NOx with NH3[J]. Applied Catalysis B: Environmental, 2019, 252: 230-239. | 2 | RYU T, KIM H, HONG S B. Nature of active sites in Cu-LTA NH3-SCR catalysts: a comparative study with Cu-SSZ-13[J]. Applied Catalysis B: Environmental, 2019, 245: 513-521. | 3 | ZHAO W Y, LI Z Q, WANG Y, et al. Ce and Zr modified WO3-TiO2 catalysts for selective catalytic reduction of NOx by NH3[J]. Catalysts, 2018, 8: 375-384. | 4 | 周飞, 熊志波, 金晶, 等. 煅烧温度对磁性铁钛复合氧化物微观结构及脱硝活性的影响[J]. 化工进展, 2018, 37(9): 3410-3415. | 4 | ZHOU F, XIONG Z B, JIN J, et al. Influence of calcination temperature on the micro-structure and the NH3-SCR activity of magnetic iron-titanium mixed oxide catalyst[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3410-3415. | 5 | 周子正, 刘志明. ZSM-5分子筛催化剂上氨选择性催化还原NOx的研究进展[J]. 工业催化, 2018, 26(5): 20-25. | 5 | ZHOU Z Z, LIU Z M. Overview of ZSM-5 zeolite catalysts for selective catalytic reduction of NOx by NH3[J]. Industrial Catalysis, 2018, 26(5): 20-25. | 6 | DEKA U, LEZCANO-GONZALEZ I, WECKHUYSEN B M, et al. Local environment and nature of Cu active sites in zeolite-based catalysts for the selective catalytic reduction of NOx[J]. ACS Catalysis, 2013, 3: 413-427. | 7 | YAO X J, CHEN L, KONG T T, et al. Support effect of the supported ceria-based catalysts during NH3-SCR reaction[J]. Chinese Journal of Catalysis, 2017, 38: 1423-1430. | 8 | 王艳,李兆强. 含稀土NH3-SCR脱硝催化剂研究进展[J]. 稀土,2016, 37(4): 120-127. | 8 | WANG Y, LI Z Q. Advances in rare earth-containing catalysts for the selective catalytic reduction of NOx with NH3[J]. Chinese Rare Earths, 2016, 37(4): 120-127. | 9 | 李露露. 铈基NH3-SCR催化剂的制备及其脱硝性能研究[D]. 南京:南京大学, 2017. | 9 | LI L L. The research of preparation and perfonnance of ceria-based catalyst in the NH3-selective catalytic reduction[D]. Nanjing: Nanjing University, 2017. | 10 | 苏茂. 稀土氧化物对SCR脱硝催化剂结构与性能的影响[D]. 镇江: 江苏科技大学, 2012. | 10 | SU M. Effects of doping rare-earth oxides on the structure and the performance of SCR catalysts[D]. Zhenjing: Jiangsu University of Science and Technology, 2012. | 11 | 赵岳, 张晓玲, 胡辉. 稀土催化剂在环境保护中的应用进展[J]. 工业催化, 2008, 16 (3): 13-17. | 11 | ZHAO Y, ZHANG X L, HU H. Application of rare-earth catalysts in environmental protection[J]. Industrial Catalysis, 2008, 16 (3): 13-17. | 12 | XU W Q, YU Y B, ZHANG C B, et al. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst[J]. Catalysis Communications, 2008, 9: 1453-1457. | 13 | ZHAO K, HAN W L, LU G X, et al. Promotion of redox and stability features of doped Ce-W-Ti for NH3-SCR reaction over a wide temperature range[J]. Applied Surface Science, 2016, 379: 316-322. | 14 | LIU C X, CHEN L, LI J H, et al. Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3[J]. Environmental Science Technology, 2012, 46: 6182-6189. | 15 | SONG Z X, NING P, ZHANG Q L, et al. Activity and hydrothermal stability of CeO2-ZrO2-WO3 for the selective catalytic reduction of NOx with NH3[J]. Journal of Environmental Science, 2016, 42: 168-177. | 16 | PENG Y, LIU C X, ZHANG X Y, et al. The effect of SiO2 on a novel CeO2-WO3/TiO2 catalyst for the selective catalytic reduction of NO with NH3[J]. Applied Catalysis B: Environmental, 2013,140/141: 276-282. | 17 | LIU X S, WU X D, XU T F, et al. Effects of silica additive on the NH3-SCR activity and thermal stability of a V2O5/WO3-TiO2 catalyst[J]. Chinese Journal of Catalysis, 2016, 37: 1340-1346. | 18 | 王艳. 逆负载型CeO2/CuO催化剂与CuO/CeO2催化剂CO优先氧化性能及活性位的研究[D]. 呼和浩特: 内蒙古大学, 2013. | 18 | WANG Y. Research of catalytic performance and active sites over inverse CeO2/CuO and CuO/CeO2 catalysts for preferential CO oxidation[D]. Hohehot: Inner Mongolia University, 2013. | 19 | SHAN W P, GENG Y, CHEN X L, et al. A highly efficient CeWOx catalyst for the selective catalytic reduction of NOx with NH3[J]. Catalysis Science Technology, 2016, 6: 1195-1200. | 20 | ZENG S H, WANG Y, DING S P, et al. Active sites over CuO/CeO2 and inverse CeO2/CuO catalysts for preferential CO oxidation[J]. Journal of Power Sources, 2014, 256: 301-311. | 21 | YOU Y C, CHANG H Z, ZHU T, et al. The poisoning effects of phosphorus on CeO2-MoO3/TiO2 DeNOx catalysts: NH3-SCR activity and the formation of N2O[J]. Molecular Catalysis, 2017, 439: 15-24. | 22 | 徐丽丽. 合成方法对 V/Ce/WTi 催化剂Ce物种及NH3-SCR 性能的影响研究[D]. 天津:天津大学, 2015. | 22 | XU L L. The effect of synthesis methods on Ce species and NH3-SCR activity over V/Ce/WTi[D]. Tianjin: Tianjin University, 2015. | 23 | XU L W, WANG C Z, CHANG H Z, et al. New insight into SO2 poisoning and regeneration of CeO2-WO3/TiO2 and V2O5-WO3/TiO2 catalysts for low-temperature NH3-SCR[J]. Environmental Science Technology, 2018, 52: 7064-7071. | 24 | LI J Y, SONG Z X, NING P, et al. Influence of calcination temperature on selective catalytic reduction of NOx with NH3 over CeO2-ZrO2-WO3 catalyst[J]. Journal of Rare Earths, 2015, 33 (7): 726-735. | 25 | CHENG K, LIU J, ZHANG Tao, et al. Effect of Ce doping of TiO2 support on NH3-SCR activity over V2O5-WO3/CeO2-TiO2 catalyst[J]. Journal of Environmental Sciences, 2014, 26: 2106-2113. | 26 | CHEN L, WENG D, WANG J D, et al. Low-temperature activity and mechanism of WO3-modified CeO2-TiO2 catalyst under NH3-NO/NO2 SCR conditions[J]. Chinese Journal of Catalysis, 2018, 39: 1804-1813. | 27 | YAN L J, LIU Y Y, HU H, et al. Investigations on the antimony promotional effect on CeO2-WO3/TiO2 for selective catalytic reduction of NOx with NH3[J]. ChemCatChem, 2016, 8: 2267-2278. | 28 | GENG Y, HUANG H L, CHEN X L, et al. The effect of Ce on a high-efficiency CeO2/WO3-TiO2 catalyst for the selective catalytic reduction of NOx with NH3[J]. RSC Advances, 2016, 6: 64803-64810. | 29 | YU L M, ZHONG Q, DENG Z Y, et al. Enhanced NOx removal performance of amorphous Ce-Ti catalyst by hydrogen pretreatment[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 371-378. | 30 | LIU J, LI X Y, ZHAO Q D, et al. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: in situ FTIR analysis for structure-activity correlation[J]. Applied Catalysis B: Environmental, 2017, 200: 297-308. |
|