1 |
TRUNG T Q, LEE N E. Materials and devices for transparent stretchable electronics[J]. Journal of Materials Chemistry C, 2017, 5(9): 2202-2222.
|
2 |
吴杰, 王俊. 薄膜结构健康监测系统和自修复材料的应用现状[J]. 工业建筑, 2014, 44(9): 126-130, 36.
|
|
WU J, WANG J. Application research of health monitoring system and self-healing material for membrane structures[J]. Industrial Construction, 2014, 44(9): 126-130, 36.
|
3 |
黄璐. 石墨烯基智能材料的制备及应用研究[D]. 天津: 南开大学, 2013.
|
|
HUANG L. Preparation and application of graphene-based smart materials[D]. Tianjin: NanKai University, 2013.
|
4 |
李海燕, 张丽冰, 王俊. 本征型自修复聚合物材料研究进展[J]. 化工进展, 2012, 31(7): 1549-1554.
|
|
LI H Y, ZHANG L B, WANG J. Research progresses in intrinsic self-healing polymer materials[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1549-1554.
|
5 |
YAN X F, WANG Y, LIU H H, et al. Synthesis and characterization of melamine-formaldehyde microcapsules containing pyraclostrobin by in situ polymerization[J]. Polymer Science Series B, 2018, 60(6): 798-805.
|
6 |
WHITE S R, SOTTOS N R, GEUBELLE P H, et al. Autonomic healing of polymer composites[J]. Nature, 2001, 409(6822): 794-797.
|
7 |
BURATTINI S, COLQUHOUN H M, FOX J D, et al. A self-repairing, supramolecular polymer system: healability as a consequence of donor-acceptor π-π stacking interactions[J]. Chemical Communications, 2009, 44: 6717-6719.
|
8 |
KALISTA S J, WARD T C. Thermal characteristics of the self-healing response in poly (ethylene-co-methacrylic acid) copolymers[J]. Journal of the Royal Society Interface, 2007, 4(13): 405-411.
|
9 |
CHEN X X, DAM M A, ONO K, et al. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295(5560): 1698-1702.
|
10 |
CHEN X X, WUDL F, MAL A K, et al. New thermally remendable highly cross-linked polymeric materials[J]. Macromolecules, 2003, 36(6): 1802-1807.
|
11 |
高飞龙, 李永存, 栾云博, 等. 不同石墨烯-碳纳米管杂化体系对热塑性聚氨酯复合材料力学和自修复性能的增强机制[J]. 高等学校化学学报, 2018, 39(4): 832-840.
|
|
GAO F L, LI Y C, LUAN Y B, et al. Enhancement mechanisms of mechanical and self-healing properties of thermoplastic polyurethane composites induced by different G-CNT hybridization systems[J]. Chemical Journal of Chinese Universities, 2018, 39(4): 832-840.
|
12 |
ZHANG E Z, WANG T, ZHAO L, et al. Fast self-healing of graphene oxide-hectorite clay-poly(N,N-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22855-22861.
|
13 |
KIM H, MIURA Y, MACOSKO C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11): 3441-3450.
|
14 |
LIANG J J, XU Y F, HUANG Y, et al. Infrared-triggered actuators from graphene-based nanocomposites[J]. The Journal of Physical Chemistry, C (Nanomaterials and Interfaces), 2009, 113(22): 9921-9927.
|
15 |
王萍萍, 袁雪, 陈松, 等. 基于石墨烯/聚丙烯酸三维多孔材料的高灵敏高稳定性柔性压阻材料的制备及其应用[J].功能材料, 2018, 49(2): 2214-2220.
|
|
WANG P P, YUAN X, CHEN S, et al.Preparation and application of highly sensitive and stable flexible piezo-resistive sensing materials based on 3D graphene/polyacrylic acid porous materials[J].Journal of Functional Materials, 2018, 49(2): 2214-2220.
|
16 |
吴腾飞. 磁场诱导构建磁性石墨烯/聚偏氟乙烯复合超滤膜及其抗污染性能研究[D]. 天津: 天津工业大学, 2015.
|
|
WU T F. Study on magnetic graphene/polyvinylidene fluoride composite ultrafiltration membrane induced by magnetic field and its anti-pollution properties[D]. Tianjin: Tianjin Polytechnic University, 2015.
|
17 |
徐杨. 石墨烯-磁性粒子-聚苯胺复合材料的制备及吸波性能研究[D]. 镇江: 江苏大学, 2015.
|
|
XU Y. Preparation of reduced graphene oxide-magnetic particles-polyaniline composites and their microwaveabsorption properties[D]. Zhenjiang: Jiangsu University, 2015.
|
18 |
杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 2008, 23(3): 193-200.
|
|
YANG Y G, CHEN C M, WEN Y F, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials, 2008, 23(3): 193-200.
|
19 |
徐俊. 基于拉曼光谱分析的煤和煤焦结构与反应性研究[D]. 武汉: 华中科技大学, 2017.
|
|
XU J. Study on structure and reactivity of coal and coke based on Raman spectrum analysis[D]. Wuhan: Huazhong University of Science and Technology, 2017.
|
20 |
TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. The Journal of Chemical Physics, 1970, 53(3): 1126-1130.
|
21 |
VIDANO R P, FISCHBACH D B, WILLIS L J, et al. Observation of Raman band shifting with excitation wavelength for carbons and graphites[J]. Solid State Communications, 1981, 39(2): 341-344.
|
22 |
刘晓峰, 米常焕, 张文庆. 3D α-Fe2O3/掺氮石墨烯/碳纳米管复合材料及其储锂性能[J]. 无机化学学报, 2014, 30(2): 242-250.
|
|
LIU X F, MI C H, ZHANG W Q. Preparation and electrochemical lithium storage of 3D α-Fe2O3/nitrogen-doped graphene/carbon nanotubes nanocomposites[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(2): 242-250.
|
23 |
李伯刚, 那娟娟, 殷杰, 等. 碳素材料表面吸附蛋白的红外光谱分析[J]. 生物医学工程学杂志, 2006, 23(5): 1052-1055.
|
|
LI B G, NA J J, YIN J, et al. Analysis of FT-IR-ATR spectra of serum proteins adsorbed on carbonaceous materials[J]. Journal of Biomedical Engineering, 2006, 23(5): 1052-1055.
|
24 |
韦刘洋, 刘定福, 梁基照. 聚丙烯/石墨烯片纳米复合材料阻燃及导热性能[J]. 工程塑料应用, 2016, 44(10): 98-101, 115.
|
|
WEI L Y, LIU D F, LIANG J Z. Fire retardancy and thermal conductivity properties of PP/GNPs nano-platelets composites[J]. Engineering Plastics Application, 2016, 44(10): 98-101, 115.
|
25 |
冯林敏. 氧化石墨烯制备石墨膜及其导热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
|
|
FENG L M. Preparation and thermal conductance research of graphite film by graphene oxide[D]. Harbin: Harbin Institute of Technology, 2015.
|
26 |
SCHOLLENBERGER C S, STEWART F D. Thermoplastic polyurethane hydrolysis stability[J]. Journal of Elastomers and Plastics, 1971, 3(1): 28-56.
|