1 | AN S, GUPTA N K, GIANCHANDANI Y B. A Si-micromachined 162-stage two-part Knudsen pump for on-chip vacuum[J]. Journal of Microelectromechanical Systems, 2014, 23(2): 406-416. |
2 | MUNTZ E P, SONE Y, AOKI K, et al. Performance analysis and optimization considerations for a Knudsen compressor in transitional flow[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002, 20(1): 214-224. |
3 | GUPTA N K, GIANCHANDANI Y B. Porous ceramics for multistage Knudsen micropumps modeling approach and experimental evaluation[J]. Journal of Micromechanics and Microengineering, 2011, 21(9): 095029. |
4 | BOND D M, WHEATLEY V, GOLDSWORTHY M. Numerical investigation into the performance of alternative Knudsen pump designs[J]. International Journal of Heat and Mass Transfer, 2016, 93: 1038-1058. |
5 | MANIOU A. Preliminary design of a Knudsen pump[D]. Thessaly:University of Thessaly, 2017. |
6 | TAKATA S, SUGIMOTO H, KOSUGE S. Gas separation by means of the Knudsen compressor[J]. European Journal of Mechanics B/Fuids, 2007, 26(2): 155-181. |
7 | DODULAD O I, IVANOVA I D, KLOSS Y Y, et al. Study of separation in micro devices by solving the Boltzmann equation [C]// 28th International Symposium on Rarefied Gas Dynamics. New York: AIP Publishing, 2012, 1501: 816-823. |
8 | SUGIMOTO H, SHINOTOU A. Gas separator with the thermal transpiration in a rarefied gas [C]//27th International Symposium on Rarefied Gas Dynamics. New York: AIP Publishing, 2011, 1333(1): 784-789. |
9 | NAKAYE S, SUGIMONO H, GUPTA N K, et al. Thermally enhanced membrane gas separation[J]. European Journal of Mechanics B: Fluids, 2015, 49: 36-49. |
10 | KOSYANCHUK V, KOVALEV V, YAKUNCHIKOV A. Multiscale modeling of a gas separation device based on effect of thermal transpiration in the membrane[J]. Separation and Purification Technology, 2017, 180: 58-68. |
11 | NAKAYE S, SUGIMONO H. Demonstration of a gas separator composed of Knudsen pumps[J]. Vacuum, 2016, 125: 154-164. |
12 | MATSUMOTO M, NAKAYE S, SUGIMOTO H. Gas separation by the molecular exchange flow through micropores of the membrane [C]// 30th International Symposium on Rarefied Gas Dynamics. New York: AIP Publishing, 2016, 1786: 080011. |
13 | 卢苇, 徐昆, 刘进阳, 等. 一种热流逸式气体分离系统: CN 20170011384.0[P]. 2019-06-13. |
13 | LU Wei, XU Kun, LIU Jinyang, et al. Thermal transpiration type gas separation system: CN 20170011384.0[P]. 2019-06-13. |
14 | 卢苇, 杨林, 曹聪, 等. 一种基于微/纳尺度热流逸效应和宏观涡流冷热效应的气体分离系统: CN 201410795222.7[P]. 2015-05-06. |
14 | LU Wei, YANG Lin, CAO Cong, et al. Gas separating system based on micro/nanoscale thermal transpiration effect and macroscopic eddy current cold and hot effect: CN 201410795222.7[P]. 2015-05-06. |
15 | 卢苇, 谢超许, 王南, 等. 一种基于热流逸效应的预热富氧大气式燃烧器: CN 201610896281.2[P]. 2017-03-15. |
15 | LU Wei, XIE Chaoxu, WANG Nan, et al. Preheating oxygen-enriched atmospheric combustor based on thermal transpiration effect: CN 201610896281.2[P]. 2017-03-15. |
16 | 卢苇, 谢超许, 王南, 等. 一种基于热流逸效应的内燃机富氧燃烧的进气系统: CN 201610894925.4[P]. 2017-02-15. |
16 | LU Wei, XIE Chaoxu, WANG Nan, et al. Internal combustion engine oxygen-enriched combustion air inlet system based on thermal transpiration effect: CN 201610894925.4[P]. 2017-02-15. |
17 | 徐昆, 卢苇, 王博韬, 等. 气体在热流逸效应作用下的压力与流量特性[J]. 高校化学工程学报, 2017, 31(6): 1285-1292. |
17 | XU Kun, LU Wei, WANG Botao, et al. Pressure and mass flow characteristics of gases under thermal transpiration effects[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(6): 1285-1292. |
18 | SHARIPOV F, KALEMPA D. Gaseous mixture flow through a long tube at arbitrary Knudsen numbers[J]. Journal of Vacuum Science & Technology A: Vacuum Surfaces and Films, 2002, 20(3): 814-822. |
19 | SZALMAS L, VALOUGEORGIS D. Rarefied gas flow of binary mixtures through long channels with triangular and trapezoidal cross sections[J]. Microfluidics & Nanofluidics, 2010, 9(2/3): 471-487. |
20 | 徐昆. 热流逸效应及其作用下的气体分离研究[D]. 南宁: 广西大学, 2017. |
20 | XU Kun. Analysis of thermal transpiration effect and its application on gas separation[D]. Nanning: Guangxi University, 2017. |
21 | SHARIPOV F, SELEZNEV V. Data on internal rarefied gas flows[J]. Journal of Physical and Chemical Reference Data, 1998, 27(3): 657-706. |
22 | 智研咨询集团. 2012—2016年中国焦炉气(焦炉煤气)市场分析与未来前景研究报告[R]. 北京: 智研咨询集团, 2012. |
22 | Zhiyan Consulting Group. The market analysis and future prospects research report of the coke oven gas from 2012 to 2016[R]. Beijing: Zhiyan Consulting Group, 2012. |
23 | 陈毕杨, 曹尚峰. 焦炉煤气制氢方法的比较及成本分析[J]. 低温与特气, 2017, 35(1): 28-30. |
23 | CHEN Biyang, CAO Shangfeng. Comparison and cost analysis of method of hydrogen production from coke oven gas[J]. Low Temperature and Specialty Gases, 2017, 35(1): 28-30. |
24 | 刘百强. 炼钢焦炉煤气提纯氢气与天然气转化制氢经济性对比[J]. 炼油技术与工程, 2014, 44(5): 61-64. |
24 | LIU Baiqiang. Economic comparison of hydrogen productions by coke oven gas purification and natural gas reforming[J]. Petroleum Refinery Engineering, 2014, 44(5): 61-64. |
25 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化 管理委员会. 水(地)源热泵机组能效限定值及能效等级: GB/T 30721—2014[S]. 北京: 中国标准出版社, 2014. |
25 | General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Minimum allowable values of energy efficiency and energy efficiency grades for water-source (ground-source) heat pumps: GB/T 30721—2014[S]. Beijing: Standards Press of China, 2014. |
26 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 冷水机组能效限定值及能效等级: GB/T 19577—2015[S]. 北京: 中国标准出版社, 2015. |
26 | General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Minimum allowable values of energy efficiency and energy efficiency grades for water chillers: GB/T 19577—2015[S]. Beijing: Standards Press of China, 2015. |