化工进展 ›› 2019, Vol. 38 ›› Issue (11): 5114-5126.DOI: 10.16085/j.issn.1000-6613.2019-0095
刘畅1,2(),闫志义1,2,李巧灵1,2,林靖1,2,黄阳1,2()
收稿日期:
2019-01-14
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
黄阳
作者简介:
刘畅(1994—),男,硕士研究生,研究方向为新型功能材料。E-mail:基金资助:
Chang LIU1,2(),Zhiyi YAN1,2,Qiaoling LI1,2,Jing LIN1,2,Yang HUANG1,2()
Received:
2019-01-14
Online:
2019-11-05
Published:
2019-11-05
Contact:
Yang HUANG
摘要:
燃油中的含硫化合物在高温燃烧时生成的硫氧化物是大气中主要的污染物之一,对环境和人类健康有极大的危害。本文介绍了目前所发展的燃油脱硫的常用方法,重点阐述了吸附脱硫技术的研究进展。首先对吸附脱硫剂的开发现状进行了介绍,对目前发展的多种吸附脱硫剂包括活性炭、金属有机物框架、表面分子印迹聚合物、无机吸附剂的吸附脱硫量、选择吸附性、吸附影响因素进行了深入分析,总结了不同吸附剂的脱硫机理,并对不同吸附剂的再生方法、再生后的吸附效果进行了概述和评价。随后对比总结了这几类吸附剂的优缺点。最后介绍了目前吸附脱硫技术所存在的问题,指出开发在非硫化合物存在的情况下对含硫有机物具有高选择性、再生性能好的吸附脱硫剂是未来的发展趋势。
中图分类号:
刘畅,闫志义,李巧灵,林靖,黄阳. 选择吸附脱硫研究进展[J]. 化工进展, 2019, 38(11): 5114-5126.
Chang LIU,Zhiyi YAN,Qiaoling LI,Jing LIN,Yang HUANG. Research progress of selective adsorption desulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5114-5126.
1 | MUSTAFAF, AL-GHOUTIM A, KHALILIF I, et al. Characteristics of organosulphur compounds adsorption onto Jordanian zeolitic tuff from diesel fuel[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 97-107. |
2 | MAX, SUNL, SONGC. A new approach to deep desulfurization of gasoline, diesel fuel and jet fuel by selective adsorption for ultra-clean fuels and for fuel cell applications[J]. Catalysis Today, 2002, 77(1/2): 107-116. |
3 | BONIEKD, FIGUEIREDOD, SANTOS A F BDOS, et al. Biodesulfurization: a mini review about the immediate search for the future technology[J]. Clean Technologies and Environmental Policy, 2015, 17(1): 29-37. |
4 | AL-DEGSY S, EL-SHEIKHA H, BAKAIN R ZAL, et al. Conventional and upcoming sulfur-cleaning technologies for petroleam fuel: a review [J]. Energy Technology, 2016, 4(6): 679-699. |
5 | ZHUY F, LIX Y, ZHUM Y. Mesoporous graphitic carbon nitride as photo-catalyst for oxidative desulfurization with oxygen[J]. Catalysis Communications, 2016, 85: 5-8. |
6 | AL-GHOUTIM A, AL-DEGSY S. Manganese-loaded activated carbon for the removal of organosulfur compounds from high-sulfur diesel fuels[J]. Energy Technology, 2014, 2(9/10): 802-810. |
7 | WANGY, YANGR T. Desulfurization of liquid fuels by adsorption on carbon-based sorbents and ultrasound-assisted sorbent regeneration[J]. Langmuir, 2007, 23(7): 3825-3831. |
8 | AGHAHOSSEINIS, DINCERI, NATERERG F. Integrated gasification and Cu-Cl cycle for trigeneration of hydrogen, steam and electricity[J]. International Journal of Hydrogen Energy, 2011, 36(4): 2845-2854. |
9 | SHENY S, LIP W, XUX H, et al. Selective adsorption for removing sulfur: a potential ultra-deep desulfurization approach of jet fuels[J]. RSC Advances, 2012, 2(5): 1700-1711. |
10 | HAJIS, ERKEYC. Removal of dibenzothiophene from model diesel by adsorption on carbon aerogels for fuel cell applications[J]. Industrial & Engineering Chemistry Research, 2003, 42(26): 6933-6937. |
11 | KIMJ H, MAX L, ZHOUA N, et al. Ultra-deep desulfurization and denitrogenation of diesel fuel by selective adsorption over three different adsorbents: a study on adsorptive selectivity and mechanism[J]. Catalysis Today, 2006, 111(1/2): 74-83. |
12 | FALLAHR N, AZIZIANS, REGGERSG, et al. Selective desulfurization of model diesel fuel by carbon nanoparticles as adsorbent[J]. Industrial & Engineering Chemistry Research, 2012, 51(44): 14419-14427. |
13 | HERNÁNDEZ-MALDONADOA J, YANGR T. Desulfurization of commercial liquid fuels by selective adsorption via π-complexation with Cu(Ⅰ)-Y Zeolite[J]. Industrial & Engineering Chemistry Research, 2003, 42(13): 3103-3110. |
14 | SHIY W, ZHANGX W, WANGL, et al. MOF-derived porous carbon for adsorptive desulfurization[J]. AIChE Journal, 2014, 60(8): 2747-2751. |
15 | YANGY X, LUH Y, YINGP L, et al. Selective dibenzothiophene adsorption on modified activated carbons[J]. Carbon, 2007, 45(15): 3042-3044. |
16 | SEREDYCHM, BANDOSZT J. Template-derived mesoporous carbons with highly dispersed transition metals as media for the reactive adsorption of dibenzothiophene[J]. Langmuir, 2007, 23(11): 6033-6041. |
17 | SEREDYCHM, BANDOSZT J. Adsorption of dibenzothiophenes on activated carbons with copper and iron deposited on their surfaces[J]. Fuel Processing Technology, 2010, 91(6): 693-701. |
18 | SCHNOBRICHJ K, LEBELO, CYCHOSZK A, et al. Linker-directed vertex desymmetrization for the production of coordination polymers with high porosity[J]. Journal of the American Chemical Society, 2010, 132(39): 13941-13948. |
19 | CYCHOSZK A, WONG-FOYA G, MATZGERA J. Liquid phase adsorption by microporous coordination polymers: removal of organosulfur compounds[J]. Journal of the American Chemical Society, 2008, 130(22): 6938-6939. |
20 | PERALTAD, CHAPLAISG, SIMON-MASSERONA, et al. Metal-organic framework materials for desulfurization by adsorption[J]. Energy & Fuels, 2012, 26(8): 4953-4960. |
21 | LIUJ W, CHENL F, CUIH, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J]. Chemical Society Reviews, 2015, 45(43): 6011-6061. |
22 | BORDIGAS, REGLIL, BONINOF, et al. Adsorption properties of HKUST-1 toward hydrogen and other small molecules monitored by IR[J]. Physical Chemistry Chemical Physics, 2007, 9(21): 2676-2685. |
23 | PETITC, BANDOSZT J. Exploring the coordination chemistry of MOF-graphite oxide composites and their applications as adsorbents[J]. Dalton Transactions, 2012, 41(14): 4027-4035. |
24 | KHANN A, JUN J W, JEONGJ H, et al. Remarkable adsorptive performance of a metal-organic framework, vanadium-benzenedicarboxylate(MIL-47), for benzothiophene[J]. Chemical Communications, 2011, 47(4): 1306-1308. |
25 | KHANN A, JHUNGS H. Adsorptive removal of benzothiophene using porous copper-benzenetricarboxylate loaded with phosphotungstic acid[J]. Fuel Processing Technology, 2012, 100(10): 49-54. |
26 | KHANN A, HASANZ, JHUNGS H. Ionic liquids supported on metal-organic frameworks: remarkable adsorbents for adsorptive desulfurization[J]. Chemistry A: European Journal, 2014, 20(2): 376-380. |
27 | SHIF, HAMMOUDM, THOMPSONL T. Selective adsorption of dibenzothiophene by functionalized metal organic framework sorbents[J]. Applied Catalysis B: Environmental, 2011, 103(3/4): 261-265. |
28 | LIUW F, LIUX G, YANGY Z, et al. Selective removal of benzothiophene and dibenzothiophene from gasoline using double-template molecularly imprinted polymers on the surface of carbon microspheres[J]. Fuel, 2014, 117: 184-190. |
29 | CASTROB, WHITCOMBEM J, VULFSONE N, et al. Molecular imprinting for the selective adsorption of organosulphur compounds present in fuels[J]. Analytica Chimica Acta, 2001, 435(1): 83-90. |
30 | YANGY Z, LIUX G, GUOM C, et al. Molecularly imprinted polymer on carbon microsphere surfaces for adsorbing dibenzothiophene[J]. Colloids & Surfaces, 2011, 377(1/2/3): 379-385. |
31 | YANGY Z, LIUX G, XUB S. Recent advances in molecular imprinting technology for the deep desulfurization of fuel oils[J]. New Carbon Materials, 2014, 29(1): 1-14. |
32 | CHANGY H, ZHANGL, YINGH J, et al. Desulfurization of gasoline using molecularly imprinted chitosan as selective adsorbents[J]. Applied Biochemistry & Biotechnology, 2010, 160(2): 593-603. |
33 | 胡廷平, 张宴铭, 郑立辉, 等. 硅胶表面苯并噻吩分子印迹聚合物的分子识别与吸附性能[J]. 燃料化学学报, 2010, 38(6): 722-729. |
HUT P, ZHANGY M, ZHENGL H, et al. Molecular recognition and adsorption performance of benzothiophene imprinted polymer on silica gel surface[J]. Journal of Fuel Chemistry & Technology, 2010, 38(6): 722-729. | |
34 | XUW Z, WEIZ, XUP P, et al. A molecularly imprinted polymer based on TiO2 as a sacrificial support for selective recognition of dibenzothiophene[J]. Chemical Engineering Journal, 2011, 172(1): 191-198. |
35 | XUW Z, ZHOUW, BIANL H, et al. Preparation of molecularly imprinted polymer by surface imprinting technique and its performance for adsorption of dibenzothiophene[J]. Journal of Separation Science, 2015, 34(14): 1746-1753. |
36 | XUW Z, ZHOUW, HUANGW H, et al. Preparation and evaluation of a novel surface-imprinted polymer for selective adsorption of dibenzothiophene[J]. Microchimica Acta, 2011, 175(1/2): 167-175. |
37 | YANGY Z, ZHANGY, LIS, et al. Grafting molecularly imprinted poly(2-acrylamido-2-methylpropanesulfonic acid) onto the surface of carbon microspheres[J]. Applied Surface Science, 2012, 258(17): 6441-6450. |
38 | VELUS, MAX L, SONGC S. Selective adsorption for removing sulfur from jet fuel over zeolite-based adsorbents[J]. Industrial & Engineering Chemistry Research, 2003, 42(21): 5293-5304. |
39 | MAX L, SPRAGUEM, SONGC S. Deep desulfurization of gasoline by selective adsorption over nickel-based adsorbent for fuel cell applications[J]. Industrial & Engineering Chemistry Research, 2005, 44(15): 5768-5775. |
40 | SRIVASTAVA, SRIVASTAVAV C. Adsorptive desulfurization by activated alumina[J]. Journal of Hazardous Materials, 2009, 170(2/3): 1133-1140. |
41 | XUX H, ZHANGS Y, LIP W, et al. Equilibrium and kinetics of jet—A fuel desulfurization by selective adsorption at room temperatures[J]. Fuel, 2013, 111(3): 172-179. |
42 | XIONGJ, YANGL, CHAOY H, et al. A large number of low coordinated atoms in boron nitride for outstanding adsorptive desulfurization performance[J]. Green Chemistry, 2016, 18(10): 3040-3047. |
43 | YANZ Y, LINJ, YUANX H, et al. Desulfurization of model oil by selective adsorption over porous boron nitride fibers with tailored microstructures[J]. Scientific Report, 2017, 7(1): 3297. |
44 | XIONGJ, ZHUW S, LIH P, et al. Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels[J]. Green Chemistry, 2015, 17(3): 1647-1656. |
45 | XIONGJ, ZHUW S, LIH P, et al. Carbon-doped porous boron nitride: metal-free adsorbents for sulfur removal from fuels[J]. Journal of Materials Chemistry A, 2015, 3(24): 12738-12747. |
46 | KHALILIF I, SULTANM, ROBLC, et al. Insights into the remediation characterization of modified bentonite in minimizing organosulphur compounds from diesel fuel[J]. Journal of Industrial & Engineering Chemistry, 2015, 28(33): 282-293. |
47 | AL-DEGSY S, AL-GHOUTIM A. Influence of diesel acidification on dibenzothiophene removal: a new desulfurization practice[J]. Separation & Purification Technology, 2015, 139: 1-4. |
48 | TANGK, SONGL J, DUANL H. Deep desulfurization by selective adsorption on a heteroatoms zeolite prepared by secondary synthesis[J]. Fuel Processing Technology, 2008, 89(1): 1-6. |
49 | CHENGZ, LIUX S, LUJ Q, et al. Deep desulfurization of FCC gasoline by selective adsorption over nanosized zeolite-based adsorbents[J]. Reaction Kinetics & Catalysis Letters, 2009, 97(1): 1-6. |
50 | SARDAK K, BHANDARIA, PANTK K, et al. Deep desulfurization of diesel fuel by selective adsorption over Ni/Al2O3 and Ni/ZSM-5 extrudates[J]. Fuel, 2012, 93(1): 86-91. |
51 | SENTORUN-SHALABYC, SAHAS K, MAX L, et al. Mesoporous-molecular-sieve-supported nickel sorbents for adsorptive desulfurization of commercial ultra-low-sulfur diesel fuel[J]. Applied Catalysis B: Environmental, 2011, 101(3/4): 718-726. |
52 | BAEZAP, AGUILAG, GRACIAF, et al. Desulfurization by adsorption with copper supported on zirconia[J]. Catalysis Communications, 2008, 9(5): 751-755. |
53 | CYCHOSZK A, WONG-FOYA G, MATZGERA J. Enabling cleaner fuels: desulfurization by adsorption to microporous coordination polymers[J]. Journal of the American Chemical Society, 2009, 131(40): 14538-14543. |
54 | XIAOJ, LIZ, LIUB, et al. Adsorption of benzothiophene and dibenzothiophene on ion-impregnated activated carbons and ion-exchanged Y zeolites[J]. Energy & Fuels, 2008, 22(6): 3858-3863. |
55 | FINSYV, VERELSTH, ALAERTSL, et al. Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal-organic framework MIL-47[J]. Journal of the American Chemical Society, 2008, 130(22): 7110-7118. |
56 | XIAOJ, SONGC S, MAX L, et al. Effects of aromatics, diesel additives, nitrogen compounds, and moisture on adsorptive desulfurization of diesel fuel over activated carbon[J]. Industrial & Engineering Chemistry Research, 2012, 51(8): 3436-3443. |
57 | PERALTAD, CHAPLAISG, SIMON-MASSERONA, et al. Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations[J]. Journal of the American Chemical Society, 2012, 134(19): 8115-8126. |
58 | SEREDYCHM, BANDOSZT J. Investigation of the enhancing effects of sulfur and/or oxygen functional groups of nanoporous carbons on adsorption of dibenzothiophenes[J]. Carbon, 2011, 49(4): 1216-1224. |
59 | SEREDYCHM, BANDOSZT J. Adsorption of dibenzothiophenes on nanoporous carbons: identification of specific adsorption sites governing capacity and selectivity[J]. Energy & Fuels, 2010, 24(6): 3352-3360. |
60 | HERNÁNDEZ-MALDONADOA J, QIG, YANGR T, et al. Desulfurization of commercial fuels by π-complexation: monolayer CuCl/γ-Al2O3[J]. Applied Catalysis B: Environmental, 2005, 61(3): 212-218. |
61 | ANIAC O, BANDOSZT J. Metal-loaded polystyrene-based activated carbons as dibenzothiophene removal media via reactive adsorption[J]. Carbon, 2006, 44(12): 2404-2412. |
62 | JIANGZ X, LIUY, SUNX P, et al. Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils[J]. Langmuir, 2003, 19(3): 731-736. |
63 | JEONH J, KO C H, KIMS H, et al. Removal of refractory sulfur compounds in diesel using activated carbon with controlled porosity[J]. Energy & Fuels, 2009, 23(5/6): 2537-2543. |
64 | BAEZAP, AGUILAG, VARGASG. Adsorption of thiophene and dibenzothiophene on highly dispersed Cu/ZrO2 adsorbents[J]. Applied Catalysis B: Environmental, 2012, 111/112: 133-140. |
65 | SANOY, SUGAHARAK, CHOIK H, et al. Two-step adsorption process for deep desulfurization of diesel oil[J]. Fuel, 2005, 84(7/8): 903-910. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[4] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[7] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[8] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[9] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[12] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[13] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |