1 | 景盛翱, 王红丽, 朱海林, 等. 典型工业源VOCs治理现状及排放组成特征[J]. 环境科学, 2018, 39(7): 3090-3095. | 1 | JING S A, WANG H L, ZHU H L, et al. Treatment status and emission characteristics of volatile organic compounds from typical industrial sources[J]. Environmental Science, 2018, 39(7): 3090-3095. | 2 | 佟瑞鹏, 张磊. 不同通勤模式暴露于VOCs的健康风险评价[J]. 环境科学, 2018(2): 663-671. | 2 | TONG R P, ZHANG L. Health risk assessment of volatile organic compounds for different commuting modes[J]. Environmental Science, 2018(2): 663-671. | 3 | 席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs排放源废气排放特征调查与分析[J]. 中国环境科学, 2010, 30(11): 1558-1562. | 3 | XI J Y, WU J L, HU H Y, et al. Investigation of industrial VOCs emission sources and analysis for their emitting characteristics[J]. China Environmental Science, 2010, 30(11): 1558-1562. | 4 | XIAO G, XU W P, WU R B, et al. Non-thermal plasmas for VOCs abatement[J]. Plasma Chemistry and Plasma Processing, 2014, 34(5): 1033-1065. | 5 | CHANG J S. Physics and chemistry of plasma pollution control technology[J]. Plasma Sources Science and Technology, 2008, 17: 1-6. | 6 | MIZUNO A. Industrial applications of atmospheric non-thermal plasma in environmental remediation[J]. Plasma Physics & Controlled Fusion, 2007, 49: A1-A15. | 7 | NAJAFPOOR A A, JAFARI A J, HOSSEINZADEH A, et al. Optimization of non-thermal plasma efficiency in the simultaneous elimination of benzene, toluene, ethyl-benzene, and xylene from polluted airstreams using response surface methodology[J]. Environmental Science and Pollution Research, 2018, 25(1): 233-241. | 8 | HARLING A M, GLOVER D J, WHITEHEAD J C, et al. Industrial scale destruction of environmental pollutants using a novel plasma reactor[J]. Industrial & Engineering Chemistry Research, 2008, 47(16): 5856-5860. | 9 | 史曜炜, 周若瑜, 崔行磊, 等. 不同电源激励下共面介质阻挡放电特性实验[J]. 电工技术学报, 2018, 33(22): 231-240. | 9 | SHI Y W, ZHOU R Y, CUI X L, et al. Experimental investigation on characteristics of coplanar dielectric barrier discharge driven by different power supplies[J]. Transactions of China Electrotechnical Society, 2018, 33(22): 231-240. | 10 | AKIHIKO O, JUNKAI H, KENGO F, et al. Decomposition of toluene using nanosecond-pulsed-discharge plasma assisted with catalysts[J]. IEEE Transactions on Plasma Science, 2015, 43(10): 3461-3469. | 11 | 章程, 邵涛, 龙凯华, 等. 大气压空气中纳秒脉冲介质阻挡放电均匀性的研究[J]. 电工技术学报, 2010, 25(1): 30-36. | 11 | ZHANG C, SHAO T, LONG K H, et al. Uniform of unipolar nanosecond pulse DBD in atmospheric air[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 30-36. | 12 | JIANG H, SHAO T, ZHANG C, et al. Comparison of AC and nanosecond-pulsed DBDs in atmospheric air[J]. IEEE Transactions on Plasma Science, 2011, 39(11): 2076-2077. | 13 | WILLIAMSON J M, TRUMP D D, BLETZINGER P, et al. Comparison of high-voltage AC and pulsed operation of a surface dielectric barrier discharge[J]. Journal of Physics D: Applied Physics, 2006, 39(20): 4400-4406. | 14 | 卢新培, 严萍, 任春生, 等. 大气压脉冲放电等离子体的研究现状与展望[J]. 中国科学(物理学, 力学, 天文学), 2011, 41(7): 801-805. | 14 | LU X P, YAN P, REN C S, et al. Review on atmospheric pressure pulsed DC discharge[J]. Scientia Sinica (Phys, Mech & Astron), 2011, 41(7): 801-805. | 15 | YAO X H, ZHANG J, LIANG X S, et al. Plasma-catalytic removal of toluene over the supported manganese oxides in DBD reactor: effect of the structure of zeolites support[J]. Chemosphere, 2018, 208: 922-930. | 16 | XIAO Z H, XU D, HAO C J, et al. High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 60-65. | 17 | ODA T. Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air[J]. Journal of Electrostatics, 2003, 57(3/4): 293-311. | 18 | HUANG H B, YE D Q, LEUNG D Y C, et al. Byproducts and pathways of toluene destruction via plasma-catalysis[J]. Journal of Molecular Catalysis A: Chemical, 2011, 336(1/2): 87-93. | 19 | LIU J J, WANG J T, CAO X, et al. Decomposition of gaseous toluene using a continuous flow discharge plasma reactor with new configurations[J]. Environmental Technology, 2015, 36(24): 3084-3093. | 20 | DURME J V, DEWULF J, SYSMANS W, et al. Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J]. Chemosphere, 2007, 68(10): 1821-1829. | 21 | CHIPER A S, BLINSIMIAND N, HENINGER M, et al. Detailed characterization of 2-heptanone conversion by dielectric barrier discharge in N2 and N2/O2 mixtures[J]. Journal of Physical Chemistry A, 2010, 114(1): 397-407. | 22 | KOGELSCHATZ U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003, 23(1): 1-46. | 23 | WU Z L, WANG J X, HAN J Y, et al. Naphthalene decomposition by dielectric barrier discharges at atmospheric pressure[J]. IEEE Transactions on Plasma Science, 2017, 45(1): 154-161. | 24 | THEVENET F, GUAITELLA O, PUZENAT E, et al. Influence of water vapour on plasma/photocatalytic oxidation efficiency of acetylene[J]. Applied Catalysis B: Environmental, 2008, 84(3/4): 813-820. | 25 | GUO Y F, YE D Q, TIAN Y F, et al. Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor[J]. Plasma Chemistry and Plasma Processing, 2006, 26(3): 237-249. | 26 | LEE H M, CHANG M B. Gas-phase removal of acetaldehyde via packed-bed dielectric barrier discharge reactor[J]. Plasma Chemistry and Plasma Processing, 2001, 21(3): 329-343. | 27 | MFOPARA A, KIRKPATRICK M J, ODIC E. Dilute methane treatment by atmospheric pressure dielectric barrier discharge: effects of water vapor[J]. Plasma Chemistry and Plasma Processing, 2009, 29(2): 91-102. | 28 | AUBRY O, CORMIER J M. Improvement of the diluted propane efficiency treatment using a non-thermal plasma[J]. Plasma Chemistry & Plasma Processing, 2009, 29(1): 13-25. | 29 | FUTAMURA S, ZHANG A H, YAMAMOTO T. The dependence of non-thermal plasma behavior of VOCs on their chemical structures[J]. Journal of Electrostatics, 1997, 42(1/2): 51-62. | 30 | AGNIHOTRI S, CAL M P, PRIEN J. Destruction of 1,1,1-trichloroethane using dielectric barrier discharge non-thermal plasma[J]. Journal of Environmental Engineering, 2004, 130(3): 349-355. | 31 | MOK Y S, LEE S B, OH J H, et al. Abatement of trichloromethane by using non-thermal plasma reactors[J]. Plasma Chemistry and Plasma Processing, 2008, 28(6): 663-676. | 32 | FALKENSTEIN Z. Effects of the O2 concentration on the removal efficiency of volatile organic compounds with dielectric barrier discharges in Ar and N2[J]. Journal of Applied Physics, 1999, 85(1): 525-529. | 33 | LEE H M, CHANG M B. Abatement of gas-phase p-xylene via dielectric barrier discharges[J]. Plasma Chemistry and Plasma Processing, 2003, 23(3): 541-558. | 34 | LIANG W J, WANG A H, MA L, et al. Combination of spontaneous polarization plasma and photocatalyst for toluene oxidation[J]. Journal of Electrostatics, 2015, 75: 27-34. | 35 | VANDENBROUCKE A M, MORENT R, GEYTER N D, et al. Non-thermal plasmas for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011, 195: 30-54. | 36 | JIN Q, JIANG B Q, HAN J Y, et al. Hexane decomposition without particle emission using a novel dielectric barrier discharge reactor filled with porous dielectric balls[J]. Chemical Engineering Journal, 2016, 286: 300-310. | 37 | TAKAKI K, URASHIMA K, CHANG J S. Ferro-electric pellet shape effect on C2F6 removal by a packed-bed-type non-thermal plasma reactor[J]. IEEE Transactions on Plasma Science, 2004, 32(6): 2175-2183. | 38 | ZHENG C H, ZHU X B, GAO X, et al. Experimental study of acetone removal by packed-bed dielectric barrier discharge reactor[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 2761-2768. | 39 | LIANG W J, FANG H P, LI J, et al. Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide[J]. Journal of Electrostatics, 2011, 69(3): 206-213. | 40 | GóMEZ-RAMíREZ A, MONTORO-DAMAS A M, RODRíGUEZ M A, et al. Improving the pollutant removal efficiency of packed-bed plasma reactors incorporating ferroelectric components[J]. Chemical Engineering Journal, 2017, 314: 311-319. | 41 | LIANG W J, MA L, LIU H, et al. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst[J]. Chemosphere, 2013, 92(10): 1390-1395. | 42 | JEONG J G, LEE H S, KANG Y, et al. Toluene decomposition by DBD-type plasma combined with metal oxide catalysts supported on ferroelectric materials[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(6): 4146-4149. | 43 | LIANG W J, LI J, LI J X, et al. Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma[J]. Journal of Hazardous Materials, 2010, 175(1/2/3): 1090-1095. | 44 | OGATA A. Effective combination of non-thermal plasma and catalysts for decomposition of benzene in air[J]. Applied Catalysis B: Environmental, 2003, 46(1): 87-95. | 45 | KIM H H, TERAMOTO Y, SANO T, et al. Effects of Si/Al ratio on the interaction of non-thermal plasma and Ag/HY catalysts[J]. Applied Catalysis B: Environmental, 2015, 166/167: 9-17. | 46 | ODA T. Non-thermal plasma processing for dilute VOCs decomposition[J]. IEEE Transactions on Industry Applications, 2002, 38(3): 873-878. | 47 | TAKAKI K, URASHIMA K, CHANG J S. Scale-up of ferro-electric packed bed reactor for C2F6 decomposition[J]. Thin Solid Films, 2006, 506(13): 414-417. | 48 | HENSEL K, MATSUI Y, KATSURA S, et al. Generation of microdischarges in porous materials[J]. Czechoslovak Journal of Physics, 2004, 54(3): 683-689. | 49 | KIM H H, OGATA A, FUTAMURA S. Oxygen partial pressure-dependent behavior of various catalysts for the total oxidation of VOCs using cycled system of adsorption and oxygen plasma[J]. Applied Catalysis B: Environmental, 2008, 79(4): 356-367. | 50 | WANG B F, XU X X, XU W C, et al. The mechanism of non-thermal plasma catalysis on volatile organic compounds removal[J]. Catalysis Surveys from Asia, 2018, 22(2): 73-94. | 51 | DOU B J, LIU D L, ZHANG Q, et al. Enhanced removal of toluene by dielectric barrier discharge coupling with Cu-Ce-Zr supported ZSM-5/TiO2/Al2O3[J]. Catalysis Communications, 2017, 92: 15-18. | 52 | WU J L, XIA Q B, WANG H H, et al. Catalytic performance of plasma catalysis system with nickel oxide catalysts on different supports for toluene removal: effect of water vapor[J]. Applied Catalysis B: Environmental, 2014, 156/157(9): 265-272. | 53 | JIANG L Y, NIE G F, ZHU R Y, et al. Efficient degradation of chlorobenzene in a non-thermal plasma catalytic reactor supported on CeO2/HZSM-5 catalysts[J]. Journal of Environmental Sciences, 2017, 55(5): 266-273. | 54 | ZHU X B, TU X, CHEN M H, et al. La0.8M0.2MnO3 (M = Ba, Ca, Ce, Mg and Sr) perovskite catalysts for plasma-catalytic oxidation of ethyl acetate[J]. Catalysis Communications, 2016, 92: 35-39. | 55 | GANDHI M S, MOK Y S. Non-thermal plasma-catalytic decomposition of volatile organic compounds using alumina supported metal oxide nanoparticles[J]. Surface and Coatings Technology, 2014, 259: 12-19. | 56 | LU M J, HUANG R, WANG P T, et al. Plasma-catalytic oxidation of toluene on MnxOyat atmospheric pressure and room temperature[J]. Plasma Chemistry and Plasma Processing, 2014, 34(5): 1141-1156. | 57 | ZHU X B, GAO X, QIN R, et al. Plasma-catalytic removal of formaldehyde over Cu-Ce catalysts in a dielectric barrier discharge reactor[J]. Applied Catalysis B: Environmental, 2015, 170/171: 293-300. | 58 | GANDHI M S, MOK Y S. Catalytic non-thermal plasma decomposition of ethylene by using ZrO2 nanoparticles[J]. Plasma Processes and Polymers, 2014, 12(3): 214-224. | 59 | KARUPPIAH J, REDDY L E, REDDY M K P P, et al. Catalytic nonthermal plasma reactor for the abatement of low concentrations of benzene[J]. International Journal of Environmental Science and Technology, 2014, 11(2): 311-318. | 60 | XU X X, WANG P T, XU W C, et al. Plasma-catalysis of metal loaded SBA-15 for toluene removal: comparison of continuously introduced and adsorption-discharge plasma system[J]. Chemical Engineering Journal, 2016, 283: 276-284. | 61 | HE C, CAO L, LIU X, et al. Catalytic behavior and synergistic effect of nonthermal plasma and CuO/AC catalyst for benzene destruction[J]. International Journal of Environmental Science and Technology, 2015, 12(11): 3531-3540. | 62 | OGATA A, ITO D, MIZUNO K, et al. Removal of dilute benzene using a zeolite-hybrid plasma reactor[J]. IEEE Transactions on Industry Applications, 2001, 37(4): 959-964. | 63 | KIM H H, OGATA A, FUTAMURA S. Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis[J]. IEEE Transactions on Plasma Science, 2006, 34(3): 984-995. | 64 | DEY G R, SHARMA A, PUSHPA K K, et al. Variable products in dielectric-barrier discharge assisted benzene oxidation[J]. Journal of Hazardous Materials, 2010, 178(1/2/3): 693-698. | 65 | TRINH Q H, LEE S B, MOK Y S. Removal of ethylene from air stream by adsorption and plasma-catalytic oxidation using silver-based bimetallic catalysts supported on zeolite[J]. Journal of Hazardous Materials, 2015, 285: 525-534. | 66 | WANG W Z, WANG H L, ZHU T L, et al. Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration[J]. Journal of Hazardous Materials, 2015, 292: 70-78. | 67 | LU M J, HUANG R, WU J L, et al. On the performance and mechanisms of toluene removal by FeOx/SBA-15-assisted non-thermal plasma at atmospheric pressure and room temperature[J]. Catalysis Today, 2015, 242: 274-286. | 68 | TIDAHY H L, SIFFERT S, WYRWALSKI F, et al. Catalytic activity of copper and palladium based catalysts for toluene total oxidation[J]. Catalysis Today, 2007, 119(1/2/3/4): 317-320. | 69 | SOLSONA B, GARCíA T, HUTCHINGS G J, et al. TAP reactor study of the deep oxidation of propane using cobalt oxide and gold-containing cobalt oxide catalysts[J]. Applied Catalysis A: General, 2009, 365(2): 222-230. | 70 | OGATA A, KIM H H, FUTAMURA S, et al. Effects of catalysts and additives on fluorocarbon removal with surface discharge plasma[J]. Applied Catalysis B: Environmental, 2004, 53(3): 175-180. | 71 | COSTA G, ASSADI A A, GHAIDA G A, et al. Study of butyraldehyde degradation and by-products formation by using a surface plasma discharge in pilot scale: process modeling and simulation of relative humidity effect[J]. Chemical Engineering Journal, 2017, 307: 785-792. | 72 | ZHU T, LI J, JIN Y, et al. Decomposition of benzene by non-thermal plasma processing: photocatalyst and ozone effect[J]. International Journal of Environmental Science & Technology, 2008, 5(3): 375-384. | 73 | SIVACHANDIRAN L, THEVENET F, GRAVEJAT P, et al. Isopropanol saturated TiO2 surface regeneration by non-thermal plasma: influence of air relative humidity[J]. Chemical Engineering Journal, 2013, 214: 17-26. | 74 | LI Y Z, FAN Z Y, SHI J W, et al. Post plasma-catalysis for VOCs degradation over different phase structure MnO2 catalysts[J]. Chemical Engineering Journal, 2014, 241: 251-258. | 75 | 印红玲, 谢家理, 杨庆良, 等. 臭氧在金属氧化物上的分解机理[J]. 化学研究与应用, 2003(1): 1-5. | 75 | YIN H L, XIE J L, YANG Q L, et al. Mechanism of ozone decomposition on the surface of metal oxide[J]. Chemical Research and Application, 2003(1): 1-5. | 76 | WANG T, CHEN S, WANG H Q, et al. In-plasma catalytic degradation of toluene over different MnO2, polymorphs and study of reaction mechanism[J]. Chinese Journal of Catalysis, 2017, 38(5): 793-803. | 77 | JARRIGE J, VERVISCH P. Plasma-enhanced catalysis of propane and isopropyl alcohol at ambient temperature on a MnO2-based catalyst[J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 74-82. | 78 | WU J L, HUANG Y X, XIA Q B, et al. Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO catalysts[J]. Plasma Chemistry and Plasma Processing, 2013, 33(6): 1073-1082. | 79 | CHANG T, SHEN Z X, HUANG Y, et al. Post-plasma-catalytic removal of toluene using MnO2-Co3O4 catalysts and their synergistic mechanism[J]. Chemical Engineering Journal, 2018, 348: 15-25. | 80 | NGUYEN DINH M T, GIRAUDON J M, VANDENBROUCKE A M, et al. Post plasma-catalysis for total oxidation of trichloroethylene over Ce-Mn based oxides synthesized by a modified “redox-precipitation route”[J]. Applied Catalysis B: Environmental, 2015, 172/173: 65-72. | 81 | NGUYEN DINH M T, GIRAUDON J M, VANDENBROUCKE A M, et al. Manganese oxide octahedral molecular sieve K-OMS-2 as catalyst in post plasma-catalysis for trichloroethylene degradation in humid air[J]. Journal of Hazardous Materials, 2016, 314: 88-94. | 82 | LI Y Z, FAN Z Y, SHI J W, et al. Modified manganese oxide octahedral molecular sieves M′-OMS-2 (M′ = Co, Ce, Cu) as catalysts in post plasma-catalysis for acetaldehyde degradation[J]. Catalysis Today, 2015, 256(1): 178-185. | 83 | WANG L, ZHANG C B, HE H, et al. Effect of doping metals on OMS-2/γ-Al2O3 catalysts for plasma-catalytic removal of o-xylene[J]. The Journal of Physical Chemistry C, 2016, 120(11): 6136-6144. | 84 | BO Z, HAO H, YANG S L, et al. Vertically-oriented graphenes supported Mn3O4, as advanced catalysts in post plasma-catalysis for toluene decomposition[J]. Applied Surface Science, 2018, 436: 570-578. | 85 | LI Y Z, FAN Z Y, SHI J W, et al. Removal of volatile organic compounds (VOCs) at room temperature using dielectric barrier discharge and plasma-catalysis[J]. Plasma Chemistry and Plasma Processing, 2014, 34(4): 801-810. | 86 | TANG X J, FENG F D, YE L L, et al. Removal of dilute VOCs in air by post-plasma catalysis over Ag-based composite oxide catalysts[J]. Catalysis Today, 2013, 211: 39-43. | 87 | ZHANG X M, HUANG Y F, LIU Z, et al. Aerosol emission and collection in styrene-contaminated air remediation with a multi-stage plasma system[J]. Journal of Electrostatics, 2015, 76: 31-38. | 88 | ZHANG X M, FENG F D, LI S R, et al. Aerosol formation from styrene removal with an AC/DC streamer corona plasma system in air[J]. Chemical Engineering Journal, 2013, 232: 527-533. | 89 | KARATUM O, DESHUSSES M A. A comparative study of dilute VOCs treatment in a non-thermal plasma reactor[J]. Chemical Engineering Journal, 2016, 294: 308-315. | 90 | MAO L A, CHEN Z Z, WU X Y, et al. Plasma-catalyst hybrid reactor with CeO2/γ-Al2O3, for benzene decomposition with synergetic effect and nano particle by-product reduction[J]. Journal of Hazardous Materials, 2018, 347: 150-159. | 91 | QIN C H, HUANG X M, ZHAO J J, et al. Removal of toluene by sequential adsorption-plasma oxidation: mixed support and catalyst deactivation[J]. Journal of Hazardous Materials, 2017, 334: 29-38. | 92 | 王美艳, 朱天乐, 樊星. 低浓度苯系物在室温下的MnOx/Al2O3催化O3氧化[J]. 中国环境科学, 2009, 29(8): 806-810. | 92 | WANG M Y, ZHU T L, FAN X. MnOx/Al2O3 catalyzed ozonation for low-concentration BTX removal at room temperature[J]. China Environmental Science, 2009, 29(8): 806-810. | 93 | DURME J V, DEWULF J, SYSMANS W, et al. Efficient toluene abatement in indoor air by a plasma catalytic hybrid system[J]. Applied Catalysis B: Environmental, 2007, 74(1/2): 161-169. | 94 | 杨懿, 张玮, 吴军良, 等. 等离子体催化降解甲苯途径的原位红外研究[J]. 环境科学学报, 2013, 33(11): 3138-3145. | 94 | YANG Y, ZHANG W, WU J L, et al. In situ infrared spectroscopic studies of plasma-catalytic degradation of toluene[J]. Acta Scientiae Circumstantiae, 2013, 33(11): 3138-3145. | 95 | RAJU B R, REDDY E L, KARUPPIAH J, et al. Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds[J]. Journal of Chemical Sciences, 2013, 125(3): 673-678. | 96 | FILATOV I E, UVARIN V V, KUZNETSOV D L. Cleaning air from multicomponent impurities of volatile organic compounds by pulsed corona discharge[J]. Technical Physics Letters, 2016, 42(9): 927-931. | 97 | RAMARAJU B, KARUPPIAH J, LINGA R E, et al. Removal of mixture of VOCs by nonthermal plasma[J]. Composite Interfaces, 2012, 19(3/4): 271-277. | 98 | WANG H C, LI D, WU Y, et al. Removal of four kinds of volatile organic compounds mixture in air using silent discharge reactor driven by bipolar pulsed power[J]. Journal of Electrostatics, 2009, 67(4): 547-553. | 99 | YAMAMOTO T, CHANG J S, BEREZIN A A, et al. Decomposition of toluene, o-xylene, trichloroethylene, and their mixture using a BaTiO3 packed-bed plasma reactor[J]. Journal of Advanced Oxidation Technologies, 1996, 1(1): 67-78. | 100 | WANG W Z, FAN X, ZHU T L, et al. Removal of gas phase dimethylamine and N,N-dimethylformamide using non-thermal plasma[J]. Chemical Engineering Journal, 2016, 299: 184-191. | 101 | ABEDI K, GHORBANI-SHAHNA F, JALEH B, et al. Enhanced performance of non-thermal plasma coupled with TiO2/GAC for decomposition of chlorinated organic compounds: influence of a hydrogen-rich substance[J]. Journal of Environmental Health Science and Engineering, 2014, 12(1): 119-132. |
|