化工进展 ›› 2019, Vol. 38 ›› Issue (9): 4131-4141.DOI: 10.16085/j.issn.1000-6613.2018-2415
收稿日期:
2018-12-14
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
孙志高
作者简介:
周麟晨(1995—),男,硕士研究生,研究方向为水合物技术研究。E-mail:基金资助:
Linchen ZHOU(),Zhigao SUN(),Juan LI,Cuimin LI
Received:
2018-12-14
Online:
2019-09-05
Published:
2019-09-05
Contact:
Zhigao SUN
摘要:
添加促进剂是高效制备水合物的研究热点,促进剂及其添加量对水合物生成效果至关重要。本文主要从热力学促进剂和动力学促进剂两大类型进行分析:总结了可溶水相热力学促进剂和不可溶水相热力学促进剂的浓度对水合物形成相平衡的影响;从表面活性剂、纳米粒子和相变材料等添加剂,阐述了动力学促进剂添加量对水合物生成诱导时间、储气量和生成速率等方面的影响。促进剂都存在最佳浓度的添加量,并且不同类型促进剂复配更有利于水合物生成。目前添加促进剂后水合物形成机理的研究大多从宏观现象推测,部分学者通过拉曼光谱、X射线衍射和显微观察探索分析促进剂对水合物形成的微观影响,这方面研究有待于进一步开展。添加量作为水合物形成促进剂的重要指标,研究者应得到水合物形成促进剂的最佳浓度与所研究对象的关联性。
中图分类号:
周麟晨,孙志高,李娟,李翠敏. 水合物形成促进剂研究进展[J]. 化工进展, 2019, 38(9): 4131-4141.
Linchen ZHOU,Zhigao SUN,Juan LI,Cuimin LI. Progress of hydrate formation promoters[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4131-4141.
1 | SLOAN E D , KOH C A . Clathrate mydrates of natural gases[M]. CRC Press: New York, 2008. |
2 | 谢应明, 魏晶晶, 刘道平, 等 . 四丁基氯化铵水合物的蓄冷特性[J]. 化工学报, 2010, 61(s2): 77-80. |
XIE Y M , WEI J J , LIU D P , et al . Cold storage characteristics of tetrabutyl ammonium chloride hydrate[J]. CIESC Journal, 2010, 61(s2): 77-80. | |
3 | 陈晶贵, 樊栓狮, 梁德青, 等 . HCFC-141b水合物空调蓄冷系统实验研究[J]. 化工学报, 2003, 54(s1): 125-130. |
CHEN J G , FAN S S , LIANG D Q , et al . Experimental study on HCFC-141b hydrate air conditioning cold storage system[J]. CIESC Journal, 2003, 54(s1): 125-130. | |
4 | LINGA P , KUMAR R , ENGLEZOS P . The clathrate hydrate process for post and pre-combustion capture of carbon dioxide[J]. Journal of Hazardous Materials, 2007, 149(3): 625-629. |
5 | DUC N H, CHAUVY F , HERRI J M . CO2 capture by hydrate crystallization—a potential solution for gas emission of steelmaking industry[J]. Energy Conversion and Management, 2007, 48(4): 1313-1322. |
6 | DASHTI H , YEW L Z, LOU X . Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science & Engineering, 2015, 23: 195-207. |
7 | 徐纯刚, 李小森, 陈朝阳 . 水合物法分离二氧化碳的研究现状[J]. 化工进展, 2011, 30(4): 701-708. |
XU C G , LI X S , CHEN C Y . Research on hydrate-based carbon dioxide separation[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 701-708. | |
8 | KHLEBNIKOV V N , ANTONOY S V , MISHIN A S , 等 . 一种新型CO2置换CH4水合物的开采方法[J]. 天然气工业, 2016, 36(7): 40-47. |
KHLEBNIKOV V N , ANTONOY S V , MISHIN A S , et al . A new CO2 displacement CH4 hydrate extraction method[J]. Natural Gas Industry, 2016, 36(7): 40-47. | |
9 | BABU P , KUMAR R , LINGA P . Unusual behavior of propane as a co-guest during hydrate formation in silica sand: potential application to seawater desalination and carbon dioxide capture[J]. Chemical Engineering Science, 2014, 117(1): 342-351. |
10 | 刘昌岭, 任宏波, 孟庆国,等 . 添加R141b促进剂的CO2水合物法海水淡化实验研究[J]. 天然气工业, 2013, 33(7): 90-95. |
LIU C L , REN H B , MENG Q G , et al . An experimental study of CO2 hydrate-based seawater desalination with R141b as an accelerant[J]. Natural Gas Industry, 2013, 33(7): 90-95. | |
11 | SUN Z G , JIAO L J , ZHAO Z G , et al . Phase equilibrium conditions of semi-calthrate hydrates of (tetra-n-butyl ammonium chloride+carbon dioxide)[J]. Journal of Chemical Thermodynamics, 2014, 75: 116-118. |
12 | LI S F , FAN S S , WANG J Q , et al . Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride)[J]. Journal of Chemical & Engineering Data, 2010, 55(9): 3212-3215. |
13 | MAKINO T , YAMAMOTO K , NAGATA H , et al .Thermodynamic stabilities of tetra-n-butyl ammonium chloride + H2, N2, CH4, CO2, or C2H6 semiclathrate hydrate systems[J]. Journal of Chemical & Engineering Data, 2010, 55(2): 839-841. |
14 | SUN Z G , LIU C G . Equilibrium conditions of methane in semiclathrate hydrates of tetra-n-butyl ammonium chloride[J]. Journal of Chemical & Engineering Data, 2012, 57(3): 978-981. |
15 | SUN Z G , SUN L . Equilibrium conditions of semi-clathrate hydrate dissociation for methane + tetra-n-butyl ammonium bromide[J]. Journal of Chemical & Engineering Data, 2010, 55(9): 3538-3541. |
16 | ARJMANDI M , CHAPOY A , TOHIDI B . Equilibrium data of hydrogen, methane, nitrogen, carbon dioxide, and natural gas in semi-clathrate hydrates of tetrabutyl ammonium bromide[J]. Journal of Chemical & Engineering Data, 2007, 52(6): 2153-2158. |
17 | WANG M , SUN Z G , QIU X H , et al . Hydrate dissociation equilibrium conditions for carbon dioxide + tetrahydrofuran[J]. Journal of Chemical & Engineering Data, 2017, 62(2): 812-815. |
18 | LEE Y J, KAWAMURA T , YAMAMOTO Y , et al . Phase equilibrium studies of tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 hydrates[J]. Journal of Chemical & Engineering Data, 2012, 57(12): 3543–3548. |
19 | DELAHAYE A , FOURNAISON L , MARINHAS S , et al . Effect of THF on equilibrium pressure and dissociation enthalpy of CO2 hydrates applied to secondary refrigeration[J]. Industrial and Engineering Chemistry Research, 2006, 45(1): 391-397. |
20 | YANG M J , JING W , WANG P F , et al . Effects of an additive mixture (THF+TBAB) on CO2 hydrate phase equilibrium[J]. Fluid Phase Equilibria, 2015, 401: 27-33. |
21 | SUN Z G , LIU C G , ZHOU B , et al . Phase equilibrium and latent heat of tetra-n-butyl ammonium chloride semi-clathrate hydrate[J]. Journal of Chemical & Engineering Data, 2011, 56(8): 3416-3418. |
22 | HEUVEL M V D , WITTEMAN R , PETERS C J . Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane[J]. Fluid Phase Equilibria, 2001, 182(1): 97-110. |
23 | MATSUMOTO Y , MAKINO T , SUGAHARA T , et al . Phase equilibrium relations for binary mixed hydrate systems composed of carbon dioxide and cyclopentane derivatives[J]. Fluid Phase Equilibria, 2014, 362(3): 379-382. |
24 | WANG M , SUN Z G , LI C H , et al . Equilibrium hydrate dissociation conditions of CO2 + HCFC141b or cyclopentane[J]. Journal of Chemical & Engineering Data, 2016, 61(9): 3250-3253. |
25 | ZANG X R , LI Q N , LI X S , et al . Experimental investigation on cyclopentane-methane hydrate formation kinetics in brine[J]. Energy & Fuels, 2016, 31(1): 824-830. |
26 | ZHAO J G , ZHAO Y S , LIANG W G , et al . Semi-clathrate hydrate process of methane in porous media-mesoporous materials of SBA-15[J]. Fuel, 2018, 220: 446-452. |
27 | 李玉星, 朱超, 王武昌 . 表面活性剂促进CO2水合物生成的实验及动力学模型[J]. 石油化工, 2012, 41(6): 699-703. |
LI Y X , ZHU C , WANG W C . Promoting effects of surfactants on carbon dioxide hydrate formation and the kinetics[J]. Petrochemical Technology, 2012, 41(6): 699-703. | |
28 | 张学民, 李洋, 姚泽, 等 . 表面活性剂对气体水合物生成过程的定量影响[J]. 过程工程学报, 2018, 18(2): 356-360. |
ZHANG X M , LI Y , YAO Z , et al . Quantitative influence of surfactants on the formation process for gas hydrate[J]. The Chinese Journal of Process Engineering, 2018, 18(2): 356-360. | |
29 | 孟汉林, 郭荣波, 王飞, 等 . 不同表面活性剂对甲烷水合物生成的影响[J]. 可再生能源, 2017, 35(3): 329-336. |
30 | MENG H L , GUO R B , WANG F , et al . Effect of different surfactants on methane hydrate formation[J]. Renewable Energy, 2017, 35(3): 329-336. |
31 | WANG F , GUO G , LIU G Q , et al . Effects of surfactant micelles and surfactant-coated nanospheres on methane hydrate growth pattern[J]. Chemical Engineering Science, 2016, 144: 108-115. |
32 | GANJI H , MANTEGHIAN M , ZADEH K S , et al . Effect of different surfactants on methane hydrate formation rate, stability and storage capacity[J]. Fuel, 2007, 86(3): 434-441. |
33 | JIANG L L , LI A R , XU J F , et al . Effects of SDS and SDBS on CO2 hydrate formation, induction time, storage capacity and stability at 274.15K and 5.0MPa[J]. Chemistry Select, 2016, 1(19): 6111-6114. |
34 | ZHANG C S , FAN S S , LIANG D Q , et al . Effect of additives on formation of natural gas hydrate[J]. Fuel, 2004, 83(16): 2115-2121. |
35 | MORAVEJI M K , GHAFFARKHAH A , SADEGHI A . Effect of three representative surfactants on methane hydrate formation rate and induction time[J]. Egyptian Journal of Petroleum, 2016, 26(2): 331-339. |
36 | 杜建伟, 唐翠萍, 樊栓狮, 等 . Span20促进甲烷水合物生成的实验研究[J]. 西安交通大学学报, 2008, 42(9): 1165-1168. |
DU J W , TANG C P , FAN S S , et al . Experimental investigation on Span20 promoting effect on methane hydrate formation[J]. Journal of Xi’an Jiaotong University, 2008, 42(9): 1165-1168. | |
37 | 李文昭, 潘振, 马贵阳, 等 . 表面活性剂吸附对促进甲烷水合物生成效果的影响[J]. 化工学报, 2017, 68(4): 1542-1549. |
LI W Z , PAN Z , MA G Y, et al . Promotion effects of surfactant adsorption on formation of methane hydrates[J]. CIESC Journal, 2017, 68(4): 1542-1549. | |
38 | KARAASLAN U , PARLAKTUNA M . Effect of surfactants on hydrate formation rate[J]. Annals of the New York Academy of Sciences, 2010, 912(1): 735-743. |
39 | 马鸿凯, 孙志高, 焦丽君, 等 . 添加剂对静态条件下HCFC-141b水合物生成的促进作用[J]. 制冷学报, 2016 (1): 101-105. |
MA H K, SUN Z G , JIAO L J , et al . Promoting effects of additives on HCFC-141b hydrate formation in quiescent systems[J]. Journal of Refrigeration, 2016 (1): 101-105. | |
40 | 马鸿凯, 孙志高, 蔡伟, 等 . HCFC-141b 水合物静态生成促进技术的试验研究[J]. 流体机械, 2016 (1): 66-70. |
MA H K, SUN Z G , CAI W , et al . Experimental study on promot technology of HCFC-141b hydration formation in quiescent system[J]. Journal of Fluid Mechanics, 2016 (1): 66-70. | |
41 | 李璞, 张龙明, 覃小焕, 等 . 微乳液中R141b水合物快速生成实验研究[J]. 工程热物理学报, 2014, 35(12): 2358-2362. |
LI P , ZHANG L M , QIN X H , et al . Experimental study on fast formation of R141b hydrate in microemulsion[J]. Journal of Engineering Thermophysics, 2014, 35(12): 2358-2362. | |
42 | 李金平, 郭开华, 梁德青, 等 . HCFC141b气体水合物快速生成实验研究[J]. 工程热物理学报, 2005 (s1): 233-236. |
LI J P , GUO K H , LIANG D Q , et al . Experimental study on rapid formation of HCFC141b gas hydrate[J]. Journal of Engineering Thermophysics, 2005 (s1): 233-236. | |
43 | LIN W , CHEN G J , SUN C Y , et al . Effect of surfactant on the formation and dissociation kinetic behavior of methane hydrate[J]. Chemical Engineering Science, 2004, 59(21): 4449-4455. |
44 | MITARAI M , KISHIMOTO M , SUH D, et al . Surfactant effects on the crystal growth of clathrate hydrate at the interface of water and hydrophobic-guest liquid[J]. Crystal Growth & Design, 2015, 15(2): 812-821. |
45 | DELROISSE H , TORRE J P , DICHARRY C . Effect of a hydrophilic cationic surfactant on cyclopentane hydrate crystal growth at the water/cyclopentane interface[J]. Crystal Growth & Design, 2017, 17: 5098-5107. |
46 | 张正国, 燕志鹏, 方晓明, 等 . 纳米技术在强化传热中应用的研究进展[J]. 化工进展, 2011, 30(1): 34-39. |
ZHANG Z G , YAN Z P , FANG X M , et al . Research development of applications of nanotechnology in heat transfer enhancement[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 34-39. | |
47 | 周诗岽, 余益松, 张锦, 等 . 纳米流体强化气体水合物生成研究进展[J]. 现代化工, 2014, 34(4): 51-56. |
ZHOU S Z , YU Y S , ZHANG J , et al . Research development of nanofluid-strengthened hydrate formation[J]. Modern Chemical Industry, 2014, 34(4): 51-56. | |
48 | 刘妮, 张亚楠, 柳秀婷, 等 . 纳米流体中CO2水合物生成特性实验研究[J]. 制冷学报, 2015, 36(2): 41-45. |
LIU N , ZHANG Y N , LIU X T , et al . Experimental study on characteristics of CO2 hydrate formation in nanofluids[J]. Journal of Refrigeration, 2015, 36(2): 41-45. | |
49 | RAHMATI A M , MANTEGHIAN M , PAHLAVANZADEH H . Experimental and theoretical investigation of methane hydrate induction time in the presence of triangular silver nanoparticles[J]. Chemical Engineering Research & Design, 2017, 120: 325-332. |
50 | PARK S S , AN E J , LEE S B, et al . Characteristics of methane hydrate formation in carbon nanofluids[J]. Journal of Industrial & Engineering Chemistry, 2012, 18(1): 443-448. |
51 | MOHAMMADI A , MANTEGHIAN M , HAGHTALAB A , et al . Kinetic study of carbon dioxide hydrate formation in presence of silver nanoparticles and SDS[J]. Chemical Engineering Journal, 2014, 237(1): 387-395. |
52 | SONG Y M , WANG F , GUO G , et al . Amphiphilic-polymer-coated carbon nanotubes as promoters for methane hydrate formation[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(10): 9271-9278. |
53 | SONG Y M , WANG F , LIU G Q , et al . Promotion effect of carbon nanotubes-doped SDS on methane hydrate formation[J]. Energy & Fuels, 2017, 31(2): 1850-1857. |
54 | 李娜, 马振魁 . 利用纳米粒子强化微乳液体系HCFC141b水合物的生成[J]. 科学通报, 2011, 56(22): 1846-1853. |
LI N , MA Z K . Nano-particle enhanced formation of HCFC141b gas hydrate in a microemulsion system[J]. Chinese Science Bulletin, 2011, 56(22): 1846-1853. | |
55 | YAN H C , SONG X F , XIN F , et al . Storage capacity and duration of methane hydration in a slurry of solid n-tetradecane[J]. Energy & Fuels, 2015, 29(1): 130-136. |
56 | CHEN B , XIN F , SONG X F , et al . Kinetics of carbon dioxide hydration enhanced by phase change slurry of n-tetradecane[J]. Energy & Fuels, 2017, 31(4): 4245-4254. |
57 | SONG X F , XIN F , YAN H C , et al . Intensification and kinetics of methane hydrate formation under heat removal by phase change of n-tetradecane[J]. AIChE Journal, 2015, 61(10): 3441-3450. |
58 | 朱明贵, 孙志高, 杨明明, 等 . 有机相变材料促进HCFC-141b水合物生成实验[J]. 化工进展, 2017, 36(4): 1265-1269. |
ZHU M G , SUN Z G , YANG M M , et al . Experimental study on promoting HCFC-141b hydrate formation with organic phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(4): 1265-1269. | |
59 | NGUYEN N N , NGUYEN A V . Hydrophobic effect on gas hydrate formation in the presence of additives[J]. Energy & Fuels, 2017, 31: 10311-10323. |
60 | LONG F , FAN S S , WANG Y H , et al . Promoting effect of super absorbent polymer on hydrate formation[J]. Journal of Natural Gas Chemistry, 2010, 19(3): 251-254. |
61 | WANG Y H , LANG X M , FAN S S . Accelerated nucleation of tetrahydrofuran (THF) hydrate in presence of ZIF-61[J]. Journal of Natural Gas Chemistry, 2012, 21(3): 299-301. |
62 | CHOUDHARY N , HANDE V R , ROY S, et al . Effect of sodium dodecyl sulfate surfactant on methane hydrate formation: a molecular dynamics study[J]. Journal of Physical Chemistry B, 2018, 122(25): 6536-6542. |
63 | 陈合龙, 韦昌富, 田慧会, 等 . CO2水合物在砂中生成和分解的核磁共振弛豫响应[J]. 物理化学学报, 2017, 33(8): 1599-1604. |
CHEN H L , WEI C F , TIAN H H , et al . NMR relaxation response of CO2 hydrate formation and dissociation in sand[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1599-1604. | |
64 | 史伶俐, 梁德青, 丁家祥 . 季铵盐半笼型甲烷水合物激光拉曼光谱研究[J]. 工程热物理学报, 2018, 39(11): 2362-2365. |
SHI L L , LIANG D Q , DING J X . Laser raman spectroscopic studies on semiclathrate hydrate formed with tetrabutylammonium salts and CH4 [J]. Journal of Engineering Thermophysics, 2018, 39(11): 2362-2365. | |
65 | 田苗, 孟庆国, 刘昌岭, 等 . 天然气水合物粉晶X射线衍射测试参数优化及分析方法[J]. 岩矿测试, 2017, 36(5): 481-488. |
TIAN M , MENG Q G , LIU C L , et al . Parameter optimization and analysis method for determination of natural gas hydrate by powder X-ray diffraction[J]. Rock and Mineral Analysis, 2017, 36(5): 481-488. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[3] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[4] | 汪鹏, 张洋, 范兵强, 何登波, 申长帅, 张贺东, 郑诗礼, 邹兴. 高碳铬铁盐酸浸出过程工艺及动力学[J]. 化工进展, 2023, 42(S1): 510-517. |
[5] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[6] | 刘阳, 王云刚, 修浩然, 邹立, 白彦渊. 基于动力学分析的核桃壳最佳炭化工艺[J]. 化工进展, 2023, 42(S1): 94-103. |
[7] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[8] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[9] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[10] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[11] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[12] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[13] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[14] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[15] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |