1 |
CHUNG H J , PARK T G . Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering[J]. Advanced Drug Delivery Reviews, 2007, 59(4/5): 249-262.
|
2 |
GENG Y , DALHAIMER P , CAI S S , et al . Shape effects of filaments versus spherical particles in flow and drug delivery[J]. Nature Nanotechnology, 2007, 2(4): 249-255.
|
3 |
FISH M B , THOMPSON A J , FROMEN C A , et al . Emergence and utility of nonspherical particles in biomedicine[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4043-4059.
|
4 |
ZHANG M J , WANG W , YANG X L , et al . Uniform microparticles with controllable highly interconnected hierarchical porous structures[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 13758-13767.
|
5 |
YU H Z , QIU X Y , NUNES S P , et al . Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity[J]. Nature Communications, 2014, 5: 4110.
|
6 |
NAKAYAMA D , TAKEOKA Y , WATANABE M , et al . Simple and precise preparation of a porous gel for a colorimetric glucose sensor by a templating technique[J]. Angewandte Chemie International Edition, 2003, 42(35): 4197-4200.
|
7 |
ZHAO X W , CAO Y , ITO F, et al . Colloidal crystal beads as supports for biomolecular screening[J]. Angewandte Chemie International Edition, 2006, 45(41): 6835-6838.
|
8 |
TOTTORI S , ZHANG L , QIU F M , et al . Magnetic helical micromachines: fabrication, controlled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6): 811-816.
|
9 |
PEYER K E , ZHANG L , NELSON B J . Bio-inspired magnetic swimming microrobots for biomedical applications[J]. Nanoscale, 2013, 5(4): 1259-1272.
|
10 |
GAO W , PENG X M , PEI A , et al . Bioinspired helical microswimmers based on vascular plants[J]. Nano Letters, 2014, 14(1): 305-310.
|
11 |
FORSTER J D , PARK J G , MITTAL M , et al . Assembly of optical-scale dumbbells into dense photonic crystals[J]. ACS Nano, 2011, 5(8): 6695-6700.
|
12 |
DU Y A , LO E, ALI S, et al . Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9522-9527.
|
13 |
ROLLAND J P , MAYNOR B W , EULISS L E , et al . Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials[J]. Journal of the American Chemical Society, 2005, 127(28): 10096-10100.
|
14 |
TAVACOLI J W , BAUER P , FERMIGIER M , et al . The fabrication and directed self-assembly of micron-sized superparamagnetic non-spherical particles[J]. Soft Matter, 2013, 9(38): 9103-9110.
|
15 |
SHIN H , KIM C . Preparation of spheroidal and ellipsoidal particles from spherical polymer particles by extension of polymer film[J]. Colloid and Polymer Science, 2012, 290(13): 1309-1315.
|
16 |
CRASSOUS J J , DIETSCH H , PFLEIDERER P , et al . Preparation and characterization of ellipsoidal-shaped thermosensitive microgel colloids with tailored aspect ratios[J]. Soft Matter, 2012, 8(13): 3538-3548.
|
17 |
CRASSOUS J J , MIHUT A M , MANSSON L K , et al . Anisotropic responsive microgels with tuneable shape and interactions[J]. Nanoscale, 2015, 7(38): 15971-15982.
|
18 |
BAAH D , TIGNER J , BEAN K , et al . Microfluidic synthesis and post processing of non-spherical polymeric microparticles[J]. Microfluidics and Nanofluidics, 2012, 12(1/4): 657-662.
|
19 |
LEE D, BEESABATHUNI S N , SHEN A Q . Shape-tunable wax microparticle synthesis via microfluidics and droplet impact[J]. Biomicrofluidics, 2015, 9(6): 064114.
|
20 |
KIM S H , ABBASPOURRAD A , WEITZ D A . Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids[J]. Journal of the American Chemical Society, 2011, 133(14): 5516-5524.
|
21 |
SHUM H C , ABATE A R , LEE D, et al . Droplet microfluidics for fabrication of non-spherical particles[J]. Macromolecular Rapid Communications, 2010, 31(2): 108-118.
|
22 |
RIAHI R , TAMAYOL A , SHAEGH S A M , et al . Microfluidics for advanced drug delivery systems[J]. Current Opinion in Chemical Engineering, 2015, 7: 101-112.
|
23 |
WANG W , ZHANG M J , CHU L Y . Functional polymeric microparticles engineered from controllable microfluidic emulsions[J]. Accounts of Chemical Research, 2014, 47(2): 373-384.
|
24 |
UTADA A S , CHU L Y , FERNANDEZ-NIEVES A , et al . Dripping, jetting, drops, and wetting: the magic of microfluidics[J]. MRS Bulletin, 2007, 32(9): 702-708.
|
25 |
KANG E , JEONG G S , CHOI Y Y , et al . Digitally tunable physicochemical coding of material composition and topography in continuous microfibres[J]. Nature Materials, 2011, 10(11): 877-883.
|
26 |
DENDUKURI D , PREGIBON D C , COLLINS J , et al . Continuous-flow lithography for high-throughput microparticle synthesis[J]. Nature Materials, 2006, 5(5): 365-369.
|
27 |
PREGIBON D C , TONER M , DOYLE P S . Multifunctional encoded particles for high-throughput biomolecule analysis[J]. Science, 2007, 315(5817): 1393-1396.
|
28 |
BONG K W , BONG K T , PREGIBON D C , et al . Hydrodynamic focusing lithography[J]. Angewandte Chemie International Edition, 2010, 49(1): 87-90.
|
29 |
HABASAKI S , LEE W C, YOSHIDA S , et al . Vertical flow lithography for fabrication of 3D anisotropic particles[J]. Small, 2015, 11(48): 6391-6396.
|
30 |
PAULSEN K S , DI CARLO D , CHUNG A J . Optofluidic fabrication for 3D-shaped particles[J]. Nature Communications, 2015, 6: 6976.
|
31 |
CHRISTOPHER G F , ANNA S L . Microfluidic methods for generating continuous droplet streams[J]. Journal of Physics D-Applied Physics, 2007, 40(19): R319-R336.
|
32 |
ABATE A R , WEITZ D A . High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics[J]. Small, 2009, 5(18): 2030-2032.
|
33 |
CHU L Y , UTADA A S , SHAH R K , et al . Controllable monodisperse multiple emulsions[J]. Angewandte Chemie International Edition, 2007, 46(47): 8970-8974.
|
34 |
WANG W , ZHANG M J , XIE R , et al . Hole-shell microparticles from controllably evolved double emulsions[J]. Angewandte Chemie International Edition, 2013, 52(31): 8084-8087.
|
35 |
MIN N G , KIM B , LEE T Y, et al . Anisotropic microparticles created by phase separation of polymer blends confined in monodisperse emulsion drops[J]. Langmuir, 2015, 31(3): 937-943.
|
36 |
SEO M, NIE Z , XU S , et al . Continuous microfluidic reactors for polymer particles[J]. Langmuir, 2005, 21(25): 11614-11622.
|
37 |
ZHAO Y J , XIE Z Y , GU H C , et al . Multifunctional photonic crystal barcodes from microfluidics[J]. NPG Asia Materials, 2012, 4(9): e25.
|
38 |
YU Z Y , WANG C F , LING L T , et al . Triphase microfluidic-directed self-assembly: anisotropic colloidal photonic crystal supraparticles and multicolor patterns made easy[J]. Angewandte Chemie International Edition, 2012, 51(10): 2375-2378.
|
39 |
NIE Z H , LI W , SEO M, et al . Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly[J]. Journal of the American Chemical Society, 2006, 128(29): 9408-9412.
|
40 |
XU K , XU J H , LU Y C , et al . A novel method of fabricating, adjusting, and optimizing polystyrene colloidal crystal nonspherical microparticles from gas-water janus droplets in a double coaxial microfluidic device[J]. Crystal Growth & Design, 2014, 14(2): 401-405.
|
41 |
CHENG Y , ZHENG F Y , LU J , et al . Bioinspired multicompartmental microfibers from microfluidics[J]. Advanced Materials, 2014, 26(30): 5184-5190.
|
42 |
YU Y , WEN H , MA J, et al . Flexible fabrication of biomimetic bamboo-like hybrid microfibers[J]. Advanced Materials, 2014, 26(16): 2494-2499.
|
43 |
UM E J, NUNES J K , PICO T , et al . Multicompartment microfibers: fabrication and selective dissolution of composite droplet-in-fiber structures[J]. Journal of Materials Chemistry B, 2014, 2(45): 7866-7871.
|
44 |
KANG E , CHOI Y Y , CHAE S K , et al . Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds[J]. Advanced Materials, 2012, 24(31): 4271-4277.
|
45 |
TOTTORI S , TAKEUCHI S . Formation of liquid rope coils in a coaxial microfluidic device[J]. RSC Advances, 2015, 5(42): 33691-33695.
|
46 |
ZHU A D , GUO M Y . Microfluidic controlled mass-transfer and buckling for easy fabrication of polymeric helical fibers[J]. Macromolecular Rapid Communications, 2016, 37(5): 426-432.
|
47 |
XU P D , XIE R X , LIU Y P , et al . Bioinspired microfibers with embedded perfusable helical channels[J]. Advanced Materials, 2017, 29(34): 1701664.
|
48 |
WANG W , HE X H , ZHANG M J , et al . Controllable microfluidic fabrication of microstructured materials from nonspherical particles to helices[J]. Macromolecular Rapid Communications, 2017, 38(23): 1700429.
|
49 |
WU Z , YU Y , ZOU M , et al . Peanut-inspired anisotropic microparticles from microfluidics[J]. Composites Communications, 2018, 10: 129-135.
|
50 |
YU Y R , SHANG L R , GAO W , et al . Microfluidic lithography of bioinspired helical micromotors[J]. Angewandte Chemie International Edition, 2017, 56(40): 12127-12131.
|