化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5247-5256.DOI: 10.16085/j.issn.1000-6613.2019-0397

• 化工过程与装备 • 上一篇    下一篇

基于WPRKPCA的非线性化工过程微小故障检测

蔡配配(),邓晓刚(),曹玉苹,邓佳伟   

  1. 中国石油大学(华东)控制科学与工程学院,山东 青岛 266580
  • 收稿日期:2019-03-17 出版日期:2019-12-05 发布日期:2019-12-05
  • 通讯作者: 邓晓刚
  • 作者简介:蔡配配(1995—),女,硕士研究生,研究方向为故障诊断。E-mail:1727149733@qq.com
  • 基金资助:
    山东省重点研发计划(2018GGX101025);中央高校基本科研业务费专项项目(17CX02054);国家自然科学基金(61403418);山东省自然科学基金(ZR2014FL016);山东省高等学校科技计划(J18KA359)

Incipient fault detection of nonlinear chemical processes based on weighted probability related KPCA

Peipei CAI(),Xiaogang DENG(),Yuping CAO,Jiawei DENG   

  1. College of Control Science and Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2019-03-17 Online:2019-12-05 Published:2019-12-05
  • Contact: Xiaogang DENG

摘要:

传统核主元分析法(KPCA)是一种广泛应用的非线性化工过程故障检测方法,但是其未充分利用过程数据的概率分布信息,往往难以有效检测过程中的微小故障。针对传统KPCA方法的局限性,本文提出了一种基于加权概率相关核主元分析(WPRKPCA)的非线性化工过程微小故障检测方法。与传统KPCA方法监控核成分的变化不同,该方法利用Kullback Leibler散度(KLD)度量核成分的概率分布变化,进而建立基于KLD成分的统计监控模型,以充分挖掘过程数据所包含的概率信息。进一步考虑到不同KLD成分承载故障信息的差异性,该方法设计了一种基于核密度估计的指数加权策略,根据KLD成分描述故障信息程度的差异分配相应的权值,以加强监控模型对微小故障检测的灵敏性。在一个数值例子和连续搅拌反应器(CSTR)系统上的仿真结果表明,本文所提方法具有比传统KPCA方法更好的微小故障检测性能。

关键词: 过程系统, 微小故障, 核主元分析, KL散度, 化学反应器, 数值模拟

Abstract:

The traditional kernel principal component analysis (KPCA) is a widely used nonlinear chemical process fault detection method, but it is often difficult to detect the incipient fault in the process effectively because it does not make full use of the probability distribution information of process data. Aiming at the limitations of the traditional KPCA method, a new incipient fault detection method of nonlinear chemical process based on weighted probability related KPCA (WPRKPCA) was proposed. Different from the traditional KPCA method monitoring the change of kernel components, the WPRKPCA uses Kullback Leibler divergence (KLD) to measure the variations of the probability distribution of the kernel components, and then establishes a statistical monitoring model based on KLD components to fully exploit the probability information contained in the process data. Taking into account the difference of fault information carried by different KLD components, the WPRKPCA designs an exponential weighting strategy based on kernel density estimation (KDE). The different weights are assigned to enhance the incipient fault detection sensitivity of the monitoring model according to the difference of fault information described by the KLD component. The simulation results on a numerical example and the continuous stirred reactor (CSTR) system showed that the WPRKPCA has better performance than the traditional KPCA for the detection of incipient faults.

Key words: process systems, incipient fault, kernel principal component analysis, the Kullback Leibler divergence, chemical reactors, numerical simulation

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn