化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5390-5401.DOI: 10.16085/j.issn.1000-6613.2019-0411
倪书权1(),高凤雨1,2,唐晓龙1,2(
),易红宏1,2,王成志1,杨晨1
收稿日期:
2019-03-19
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
唐晓龙
作者简介:
倪书权(1995—),男,硕士研究生,研究方向为环境催化。E-mail:基金资助:
Shuquan NI1(),Fengyu GAO1,2,Xiaolong TANG1,2(
),Honghong YI1,2,Chengzhi WANG1,Chen YANG1
Received:
2019-03-19
Online:
2019-12-05
Published:
2019-12-05
Contact:
Xiaolong TANG
摘要:
当前灰霾等大气污染问题备受关注,高效、廉价的催化净化材料作为污染治理技术的核心之一,其研发意义非凡。以柔性材料为基底制备的新型整体式催化剂因催化活性高、加工成型简单、应用灵活、易于实现催化剂原位再生等优点,成为环境催化领域发展的一个新兴热点方向。本文介绍了以金属泡沫、有机泡沫以及纤维等柔性材料为载体的催化剂特性和应用领域,重点阐述了上述柔性负载型催化剂的典型合成过程及其对气态污染物(如NOx、甲苯、甲醛等)的催化性能和净化机制,综述了其在脱硝领域的应用研究成果,包括抗硫耐水机理、纤维滤布催化剂的协同除尘脱硝能力以及碳泡沫催化剂的高效催化性能等。通过总结分析柔性负载型催化剂阶段性研究成果、应用现状以及实际应用问题,进一步展望其在环境催化净化领域的研究方向、重点和难点。催化剂黏结性、活性、稳定性的提升以及移动床反应器-催化剂的匹配设计与优化都将是柔性高效一体式催化剂的研发重心所在,此类催化剂的成功研发将会为中小型燃煤炉窖尾气的催化净化提供技术核心与保障。
中图分类号:
倪书权,高凤雨,唐晓龙,易红宏,王成志,杨晨. 柔性负载型催化剂催化净化气态污染物研究进展[J]. 化工进展, 2019, 38(12): 5390-5401.
Shuquan NI,Fengyu GAO,Xiaolong TANG,Honghong YI,Chengzhi WANG,Chen YANG. Research progress in catalytic purification of gaseous pollutants by flexible supported catalysts[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5390-5401.
1 | LI K, TANG X L, YI H H, et al. Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Ox catalyst[J]. Chemical Engineering Journal, 2012, 192: 99-104. |
2 | OLSSON L, WIJAYANTI K, LEISTNER K, et al. A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH3-SCR[J]. Applied Catalysis B: Environmental, 2016, 183: 394-406. |
3 | WANG X Y, JIANG L L, WANG J Y, et al. Ag/bauxite catalysts: improved low-temperature activity and SO2 tolerance for H2-promoted NH3-SCR of NOx[J]. Applied Catalysis B: Environmental, 2015, 165: 700-705. |
4 | VALTANEN A, HUUHTANEN M, RAUTIO A R, et al. Noble metal/CNT based catalysts in NH3 and EtOH assisted SCR of NO[J]. Topics in Catalysis, 2015, 58(14/15/16/17): 984-992. |
5 | GAO F Y, TANG X L, YI H H, et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chemical Engineering Journal, 2017, 317: 20-31. |
6 | LI Y, LI Y P, WANG P F, et al. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods[J]. Chemical Engineering Journal, 2017, 330: 213-222. |
7 | LI S H, HUANG B C, YU C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catalysis Communications, 2017, 98: 47-51. |
8 | ZHANG D S, ZHANG L, FANG C, et al. MnOx-CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3[J]. RSC Advances, 2013, 3(23): 8811-8819. |
9 | ZHANG Z Q, ATKINSON J D, JIANG B Q, et al. Nitric oxide oxidation catalyzed by microporous activated carbon fiber cloth: an updated reaction mechanism[J]. Applied Catalysis B: Environmental, 2014, 148: 573-581. |
10 | YANG B, SHEN Y S, SU Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 133-141. |
11 | LIU Q, ZHENG Y Y, WANG X. Research on de-NO by low-temperature SCR based on MnOx-CeO2/PPSN[J]. Journal of Fuel Chemistry and Technology, 2012, 40(4): 452-455. |
12 | CHEN X H, ZHENG Y Y, ZHANG Y B. MnO2-Fe2O3 catalysts supported on polyphenylene sulfide filter felt by a redox method for the low-temperature NO reduction with NH3[J]. Catalysis Communications, 2018, 105: 16-19. |
13 | CAI S X, ZHANG D S, SHI L Y, et al. Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts[J]. Nanoscale, 2014, 6(13): 7346-7353. |
14 | FANG C, SHI L Y, HU H, et al. Rational design of 3D hierarchical foam-like Fe2O3@CuOx monolith catalysts for selective catalytic reduction of NO with NH3[J]. RSC Advances, 2015, 5(15): 11013-11022. |
15 | CAI S X, LIU J, ZHA K W, et al. A general strategy for the insitu decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts[J]. Nanoscale, 2017, 9(17): 5648-5657. |
16 | 李锦, 许绿丝, 李宝宁, 等. 改性酚醛基炭泡沫的表面结构及脱硫脱硝[J]. 环境工程学报, 2012, 6(5): 1637-1642. |
LI J, XU L S, LI B N, et al. Surface structure and simultaneous removal of SO2 and NO of modified phenolic carbon foam[J]. Chinese Journal of Environmental Engineering, 2012, 6(5): 1637-1642. | |
17 | XIONG X H, DING D, CHEN D C, et al. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors[J]. Nano Energy, 2015, 11: 154-161. |
18 | RAJA D S, LIN H W, LU S Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities[J]. Nano Energy, 2019, 57: 1-13. |
19 | WAN Y P, ZHAO W R, TANG Y, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B: Environmental, 2014, 148/149(6): 114-122. |
20 | ZHANG L, SHI L Y, HUANG L, et al. Rational design of high-performance deNOx catalysts based on MnxCo3-xO4 nanocages derived from metal-organic frameworks[J]. ACS Catalysis, 2014, 4(6): 1753-1763. |
21 | LIU Y, XU J, LI H R, et al. Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts[J]. Journal of Materials Chemistry A, 2015, 3(21): 11543-11553. |
22 | ZHANG T, LIU J, WANG D X, et al. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe-Cu nanocomposite catalysts: the Fe-Cu bimetallic effect[J]. Applied Catalysis B: Environmental, 2014, 148/149(6): 520-531. |
23 | LI X B, WANG L L, LU X H. Preparation of silver-modified TiO2via microwave-assisted method and its photocatalytic activity for toluene degradation[J]. Journal of Hazardous Materials, 2010, 177(1): 639-647. |
24 | ZHANG Q, LI F, CHANG X Y, et al. Comparison of nickel foam/Ag-supported ZnO, TiO2, and WO3 for toluene photodegradation[J]. Materials and Manufacturing Processes, 2014, 29(7): 789-794. |
25 | WU J L, HUANG Y X, X Q B, et al. Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO catalysts[J]. Plasma Chemistry & Plasma Processing, 2013, 33(6): 1073-1082. |
26 | ZHENG M F, YU D Q, DUAN L J, et al. In-situ fabricated CuO nanowires/Cu foam as a monolithic catalyst for plasma-catalytic oxidation of toluene[J]. Catalysis Communications, 2017, 100: 187-190. |
27 | LIAO Y C, XIE C S, LIU Y, et al. Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite[J]. Ceramics International, 2012, 38(6): 4437-4444. |
28 | 丁震, 冯小刚, 陈晓东, 等. 金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs[J]. 环境科学, 2006 (9): 1814-1819. |
DING Z, FENG X G, CHEN X D, et al. Photocatalytic degradation of formaldehyde and VOCs in air on the porous nickel mesh coated with nanometer TiO2[J]. Environmental Science, 2006 (9): 1814-1819. | |
29 | GUO Y F, YE D Q, CHEN K F, et al. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis today, 2007, 126(3/4): 328-337. |
30 | YANG L P, LIU Z Y, SHI J W, et al. Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde[J]. Catalysis Today, 2007, 126(3/4): 359-368. |
31 | CAO C M, XING L L, YANG Y X, et al. Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode[J]. Applied Catalysis B: Environmental, 2017, 218: 32-45. |
32 | CAO C M, LI X G, ZHA Y Q, et al. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode[J]. Nanoscale, 2016, 8(11): 5857-5864. |
33 | CAO C M, XING L L, YANG Y X, et al. The monolithic transition metal oxide crossed nanosheets used for diesel soot combustion under gravitational contact mode[J]. Applied Surface Science, 2017, 406: 245-253. |
34 | XING L L, YANG Y X, CAO C M, et al. Decorating CeO2 nanoparticles on Mn2O3 nanosheets to improve catalytic soot combustion[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16544-16554. |
35 | SHEN B X, LIU T, ZHAO N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences, 2010, 22(9): 1447-1454. |
36 | LI H, YU D H, HU Y, et al. Effect of preparation method on the structure and catalytic property of activated carbon supported nickel oxide catalysts[J]. Carbon, 2010, 48(15): 4547-4555. |
37 | JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1249-1254. |
38 | ZHU L L, HUANG B C, WANG W H, et al. Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers[J]. Catalysis Communications, 2011, 12(6): 394-398. |
39 | LI P, LU P, ZHAI Y B, et al. Low temperature SCR of NO with catalysts prepared by modified ACF loading Mn and Ce: effects of modification method[J]. Environmental technology, 2015, 36(18): 2390-2400. |
40 | LU P, LI C T, ZENG G M, et al. Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 157-161. |
41 | ZENG Z, LU P, LI C T, et al. Reaction of NO at low temperature by ACF loading urea and rare-earth element oxides (La2O3, CeO2)[J]. Journal of Coordination Chemistry, 2012, 65(11): 1992-1998. |
42 | ZENG Z, LU P, LI C T, et al. Selective catalytic reduction (SCR) of NO by urea loaded on activated carbon fibre (ACF) and CeO2/ACF at 30 C: the SCR mechanism[J]. Environmental Technology, 2012, 33(11): 1331-1337. |
43 | JIANG X, LU P, LI C T, et al. Experimental study on a room temperature urea-SCR of NO over activated carbon fibre-supported CeO2-CuO[J]. Environmental technology, 2013, 34(5): 591-598. |
44 | WANG M X, LIU H N, HUANG Z H, et al. Activated carbon fibers loaded with MnO2 for removing NO at room temperature[J]. Chemical Engineering Journal, 2014, 256: 101-106. |
45 | TIAN M J, LIAO F, KE Q F, et al. Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene[J]. Chemical Engineering Journal, 2017, 328: 962-976. |
46 | LI M, LU B, KE Q F, et al. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal[J]. Journal of Hazardous Materials, 2017, 333: 88-98. |
47 | YAO Y, LI G H, CISTON S, et al. Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity[J]. Environmental Science & Technology, 2008, 42(13): 4952-4957. |
48 | DAI Z J, YU X W, HUANG C, et al. Nanocrystalline MnO2 on an activated carbon fiber for catalytic formaldehyde removal[J]. RSC Advances, 2016, 6(99): 97022-97029. |
49 | KANG M, PARK E D, KIM J M, et al. Simultaneo removal of particulates and NO by the catalytic bag filter containing MnOx catalysts[J]. Korean Journal of Chemical Engineering, 2009, 26(1): 86-89. |
50 | ZHENG Y Y, ZHANG Y B, WANG X, et al. MnO2 catalysts uniformly decorated on polyphenylene sulfide filter felt by a polypyrrole-assisted method for use in the selective catalytic reduction of NO with NH3[J]. RSC Advances, 2014, 4(103): 59242-59247. |
51 | YANG B, ZHENG D H, SHEN Y S, et al. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/PPS catalytic filters applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2015, 24: 148-152. |
52 | 邱军, 李娜. 有机多孔泡沫材料应用的研究进展[J]. 材料导报, 2012, 26(3): 91-95. |
QIU J, LI N. Research progress of application for organic porous foam[J]. Materials Research, 2012, 26(3): 91-95. | |
53 | 纳宏波, 许绿丝, 李锦. 改性酚醛基活性炭泡沫的制备与表征[J]. 材料导报, 2010, 24(18): 104-107. |
NA H B, XU L S, LI J. Study on the surface characters of modified phenolic based activated carbon foam[J]. Materials Review, 2010, 24 (18): 104-107. | |
54 | 程辛, 许绿丝. 钴、锰改性方法对酚醛炭泡沫除SO2/NO的影响[J]. 华侨大学学报(自然科学版), 2014, 35(5): 552-557. |
CHENG X, XU L S. Modification methods of Co and Mn and the influence on removel of SO2 and NO of the carbon foams from phenolic resin[J]. Journal of Huaqiao University(Natural Science), 2014, 35(5): 552-557. | |
55 | HAJIESMAILI S, JOSSET S, BÉGIN D, et al. 3D solid carbon foam-based photocatalytic materials for vapor phase flow-through structured photoreactors[J]. Applied Catalysis A: General, 2010, 382(1): 122-130. |
56 | JANIK H, MARZEC M. A review: fabrication of porous polyurethane scaffolds[J]. Materials Science and Engineering: C, 2015, 48: 586-591. |
57 | CHEN S L, HE G H, HU H, et al. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption[J]. Energy & Environmental Science, 2013, 6(8): 2435-2439. |
58 | HE S J, CHEN W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites[J]. Journal of Power Sources, 2014, 262: 391-400. |
59 | YING B, LIANG Z, WANG C X, et al. Synthesis of carbon nanofiber/carbon-foam composite for catalyst support in gas-phase catalytic reactions[J]. New Carbon Materials, 2011, 26(5): 341-346. |
60 | ORDOMSKY V, SCHOUTEN J, VAN D S J, et al. Foam supported sulfonated polystyrene as a new acidic material for catalytic reactions[J]. Chemical Engineering Journal, 2012, 207: 218-225. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[12] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[13] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[14] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[15] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 940
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 344
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |