1 |
LI K, TANG X L, YI H H, et al. Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Ox catalyst[J]. Chemical Engineering Journal, 2012, 192: 99-104.
|
2 |
OLSSON L, WIJAYANTI K, LEISTNER K, et al. A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH3-SCR[J]. Applied Catalysis B: Environmental, 2016, 183: 394-406.
|
3 |
WANG X Y, JIANG L L, WANG J Y, et al. Ag/bauxite catalysts: improved low-temperature activity and SO2 tolerance for H2-promoted NH3-SCR of NOx[J]. Applied Catalysis B: Environmental, 2015, 165: 700-705.
|
4 |
VALTANEN A, HUUHTANEN M, RAUTIO A R, et al. Noble metal/CNT based catalysts in NH3 and EtOH assisted SCR of NO[J]. Topics in Catalysis, 2015, 58(14/15/16/17): 984-992.
|
5 |
GAO F Y, TANG X L, YI H H, et al. Promotional mechanisms of activity and SO2 tolerance of Co- or Ni-doped MnOx-CeO2 catalysts for SCR of NOx with NH3 at low temperature[J]. Chemical Engineering Journal, 2017, 317: 20-31.
|
6 |
LI Y, LI Y P, WANG P F, et al. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods[J]. Chemical Engineering Journal, 2017, 330: 213-222.
|
7 |
LI S H, HUANG B C, YU C L. A CeO2-MnOx core-shell catalyst for low-temperature NH3-SCR of NO[J]. Catalysis Communications, 2017, 98: 47-51.
|
8 |
ZHANG D S, ZHANG L, FANG C, et al. MnOx-CeOx/CNTs pyridine-thermally prepared via a novel in situ deposition strategy for selective catalytic reduction of NO with NH3[J]. RSC Advances, 2013, 3(23): 8811-8819.
|
9 |
ZHANG Z Q, ATKINSON J D, JIANG B Q, et al. Nitric oxide oxidation catalyzed by microporous activated carbon fiber cloth: an updated reaction mechanism[J]. Applied Catalysis B: Environmental, 2014, 148: 573-581.
|
10 |
YANG B, SHEN Y S, SU Y, et al. Removal characteristics of nitrogen oxides and particulates of a novel Mn-Ce-Nb-Ox/P84 catalytic filter applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2017, 50: 133-141.
|
11 |
LIU Q, ZHENG Y Y, WANG X. Research on de-NO by low-temperature SCR based on MnOx-CeO2/PPSN[J]. Journal of Fuel Chemistry and Technology, 2012, 40(4): 452-455.
|
12 |
CHEN X H, ZHENG Y Y, ZHANG Y B. MnO2-Fe2O3 catalysts supported on polyphenylene sulfide filter felt by a redox method for the low-temperature NO reduction with NH3[J]. Catalysis Communications, 2018, 105: 16-19.
|
13 |
CAI S X, ZHANG D S, SHI L Y, et al. Porous Ni-Mn oxide nanosheets in situ formed on nickel foam as 3D hierarchical monolith de-NOx catalysts[J]. Nanoscale, 2014, 6(13): 7346-7353.
|
14 |
FANG C, SHI L Y, HU H, et al. Rational design of 3D hierarchical foam-like Fe2O3@CuOx monolith catalysts for selective catalytic reduction of NO with NH3[J]. RSC Advances, 2015, 5(15): 11013-11022.
|
15 |
CAI S X, LIU J, ZHA K W, et al. A general strategy for the insitu decoration of porous Mn-Co bi-metal oxides on metal mesh/foam for high performance de-NOx monolith catalysts[J]. Nanoscale, 2017, 9(17): 5648-5657.
|
16 |
李锦, 许绿丝, 李宝宁, 等. 改性酚醛基炭泡沫的表面结构及脱硫脱硝[J]. 环境工程学报, 2012, 6(5): 1637-1642.
|
|
LI J, XU L S, LI B N, et al. Surface structure and simultaneous removal of SO2 and NO of modified phenolic carbon foam[J]. Chinese Journal of Environmental Engineering, 2012, 6(5): 1637-1642.
|
17 |
XIONG X H, DING D, CHEN D C, et al. Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high-performance supercapacitors[J]. Nano Energy, 2015, 11: 154-161.
|
18 |
RAJA D S, LIN H W, LU S Y. Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities[J]. Nano Energy, 2019, 57: 1-13.
|
19 |
WAN Y P, ZHAO W R, TANG Y, et al. Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3[J]. Applied Catalysis B: Environmental, 2014, 148/149(6): 114-122.
|
20 |
ZHANG L, SHI L Y, HUANG L, et al. Rational design of high-performance deNOx catalysts based on MnxCo3-xO4 nanocages derived from metal-organic frameworks[J]. ACS Catalysis, 2014, 4(6): 1753-1763.
|
21 |
LIU Y, XU J, LI H R, et al. Rational design and in situ fabrication of MnO2@NiCo2O4 nanowire arrays on Ni foam as high-performance monolith de-NOx catalysts[J]. Journal of Materials Chemistry A, 2015, 3(21): 11543-11553.
|
22 |
ZHANG T, LIU J, WANG D X, et al. Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe-Cu nanocomposite catalysts: the Fe-Cu bimetallic effect[J]. Applied Catalysis B: Environmental, 2014, 148/149(6): 520-531.
|
23 |
LI X B, WANG L L, LU X H. Preparation of silver-modified TiO2via microwave-assisted method and its photocatalytic activity for toluene degradation[J]. Journal of Hazardous Materials, 2010, 177(1): 639-647.
|
24 |
ZHANG Q, LI F, CHANG X Y, et al. Comparison of nickel foam/Ag-supported ZnO, TiO2, and WO3 for toluene photodegradation[J]. Materials and Manufacturing Processes, 2014, 29(7): 789-794.
|
25 |
WU J L, HUANG Y X, X Q B, et al. Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO catalysts[J]. Plasma Chemistry & Plasma Processing, 2013, 33(6): 1073-1082.
|
26 |
ZHENG M F, YU D Q, DUAN L J, et al. In-situ fabricated CuO nanowires/Cu foam as a monolithic catalyst for plasma-catalytic oxidation of toluene[J]. Catalysis Communications, 2017, 100: 187-190.
|
27 |
LIAO Y C, XIE C S, LIU Y, et al. Comparison on photocatalytic degradation of gaseous formaldehyde by TiO2, ZnO and their composite[J]. Ceramics International, 2012, 38(6): 4437-4444.
|
28 |
丁震, 冯小刚, 陈晓东, 等. 金属泡沫镍负载纳米TiO2光催化降解甲醛和VOCs[J]. 环境科学, 2006 (9): 1814-1819.
|
|
DING Z, FENG X G, CHEN X D, et al. Photocatalytic degradation of formaldehyde and VOCs in air on the porous nickel mesh coated with nanometer TiO2[J]. Environmental Science, 2006 (9): 1814-1819.
|
29 |
GUO Y F, YE D Q, CHEN K F, et al. Toluene removal by a DBD-type plasma combined with metal oxides catalysts supported by nickel foam[J]. Catalysis today, 2007, 126(3/4): 328-337.
|
30 |
YANG L P, LIU Z Y, SHI J W, et al. Design consideration of photocatalytic oxidation reactors using TiO2-coated foam nickels for degrading indoor gaseous formaldehyde[J]. Catalysis Today, 2007, 126(3/4): 359-368.
|
31 |
CAO C M, XING L L, YANG Y X, et al. Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode[J]. Applied Catalysis B: Environmental, 2017, 218: 32-45.
|
32 |
CAO C M, LI X G, ZHA Y Q, et al. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode[J]. Nanoscale, 2016, 8(11): 5857-5864.
|
33 |
CAO C M, XING L L, YANG Y X, et al. The monolithic transition metal oxide crossed nanosheets used for diesel soot combustion under gravitational contact mode[J]. Applied Surface Science, 2017, 406: 245-253.
|
34 |
XING L L, YANG Y X, CAO C M, et al. Decorating CeO2 nanoparticles on Mn2O3 nanosheets to improve catalytic soot combustion[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 16544-16554.
|
35 |
SHEN B X, LIU T, ZHAO N, et al. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Journal of Environmental Sciences, 2010, 22(9): 1447-1454.
|
36 |
LI H, YU D H, HU Y, et al. Effect of preparation method on the structure and catalytic property of activated carbon supported nickel oxide catalysts[J]. Carbon, 2010, 48(15): 4547-4555.
|
37 |
JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. Journal of Hazardous Materials, 2009, 162(2/3): 1249-1254.
|
38 |
ZHU L L, HUANG B C, WANG W H, et al. Low-temperature SCR of NO with NH3 over CeO2 supported on modified activated carbon fibers[J]. Catalysis Communications, 2011, 12(6): 394-398.
|
39 |
LI P, LU P, ZHAI Y B, et al. Low temperature SCR of NO with catalysts prepared by modified ACF loading Mn and Ce: effects of modification method[J]. Environmental technology, 2015, 36(18): 2390-2400.
|
40 |
LU P, LI C T, ZENG G M, et al. Low temperature selective catalytic reduction of NO by activated carbon fiber loading lanthanum oxide and ceria[J]. Applied Catalysis B: Environmental, 2010, 96(1/2): 157-161.
|
41 |
ZENG Z, LU P, LI C T, et al. Reaction of NO at low temperature by ACF loading urea and rare-earth element oxides (La2O3, CeO2)[J]. Journal of Coordination Chemistry, 2012, 65(11): 1992-1998.
|
42 |
ZENG Z, LU P, LI C T, et al. Selective catalytic reduction (SCR) of NO by urea loaded on activated carbon fibre (ACF) and CeO2/ACF at 30 C: the SCR mechanism[J]. Environmental Technology, 2012, 33(11): 1331-1337.
|
43 |
JIANG X, LU P, LI C T, et al. Experimental study on a room temperature urea-SCR of NO over activated carbon fibre-supported CeO2-CuO[J]. Environmental technology, 2013, 34(5): 591-598.
|
44 |
WANG M X, LIU H N, HUANG Z H, et al. Activated carbon fibers loaded with MnO2 for removing NO at room temperature[J]. Chemical Engineering Journal, 2014, 256: 101-106.
|
45 |
TIAN M J, LIAO F, KE Q F, et al. Synergetic effect of titanium dioxide ultralong nanofibers and activated carbon fibers on adsorption and photodegradation of toluene[J]. Chemical Engineering Journal, 2017, 328: 962-976.
|
46 |
LI M, LU B, KE Q F, et al. Synergetic effect between adsorption and photodegradation on nanostructured TiO2/activated carbon fiber felt porous composites for toluene removal[J]. Journal of Hazardous Materials, 2017, 333: 88-98.
|
47 |
YAO Y, LI G H, CISTON S, et al. Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity[J]. Environmental Science & Technology, 2008, 42(13): 4952-4957.
|
48 |
DAI Z J, YU X W, HUANG C, et al. Nanocrystalline MnO2 on an activated carbon fiber for catalytic formaldehyde removal[J]. RSC Advances, 2016, 6(99): 97022-97029.
|
49 |
KANG M, PARK E D, KIM J M, et al. Simultaneo removal of particulates and NO by the catalytic bag filter containing MnOx catalysts[J]. Korean Journal of Chemical Engineering, 2009, 26(1): 86-89.
|
50 |
ZHENG Y Y, ZHANG Y B, WANG X, et al. MnO2 catalysts uniformly decorated on polyphenylene sulfide filter felt by a polypyrrole-assisted method for use in the selective catalytic reduction of NO with NH3[J]. RSC Advances, 2014, 4(103): 59242-59247.
|
51 |
YANG B, ZHENG D H, SHEN Y S, et al. Influencing factors on low-temperature deNOx performance of Mn-La-Ce-Ni-Ox/PPS catalytic filters applied for cement kiln[J]. Journal of Industrial and Engineering Chemistry, 2015, 24: 148-152.
|
52 |
邱军, 李娜. 有机多孔泡沫材料应用的研究进展[J]. 材料导报, 2012, 26(3): 91-95.
|
|
QIU J, LI N. Research progress of application for organic porous foam[J]. Materials Research, 2012, 26(3): 91-95.
|
53 |
纳宏波, 许绿丝, 李锦. 改性酚醛基活性炭泡沫的制备与表征[J]. 材料导报, 2010, 24(18): 104-107.
|
|
NA H B, XU L S, LI J. Study on the surface characters of modified phenolic based activated carbon foam[J]. Materials Review, 2010, 24 (18): 104-107.
|
54 |
程辛, 许绿丝. 钴、锰改性方法对酚醛炭泡沫除SO2/NO的影响[J]. 华侨大学学报(自然科学版), 2014, 35(5): 552-557.
|
|
CHENG X, XU L S. Modification methods of Co and Mn and the influence on removel of SO2 and NO of the carbon foams from phenolic resin[J]. Journal of Huaqiao University(Natural Science), 2014, 35(5): 552-557.
|
55 |
HAJIESMAILI S, JOSSET S, BÉGIN D, et al. 3D solid carbon foam-based photocatalytic materials for vapor phase flow-through structured photoreactors[J]. Applied Catalysis A: General, 2010, 382(1): 122-130.
|
56 |
JANIK H, MARZEC M. A review: fabrication of porous polyurethane scaffolds[J]. Materials Science and Engineering: C, 2015, 48: 586-591.
|
57 |
CHEN S L, HE G H, HU H, et al. Elastic carbon foam via direct carbonization of polymer foam for flexible electrodes and organic chemical absorption[J]. Energy & Environmental Science, 2013, 6(8): 2435-2439.
|
58 |
HE S J, CHEN W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites[J]. Journal of Power Sources, 2014, 262: 391-400.
|
59 |
YING B, LIANG Z, WANG C X, et al. Synthesis of carbon nanofiber/carbon-foam composite for catalyst support in gas-phase catalytic reactions[J]. New Carbon Materials, 2011, 26(5): 341-346.
|
60 |
ORDOMSKY V, SCHOUTEN J, VAN D S J, et al. Foam supported sulfonated polystyrene as a new acidic material for catalytic reactions[J]. Chemical Engineering Journal, 2012, 207: 218-225.
|