化工进展 ›› 2020, Vol. 39 ›› Issue (2): 521-532.DOI: 10.16085/j.issn.1000-6613.2019-0785
张文华1,2(),佃丽雯2,陈海燕2,叶文华1,2,胡晓峰1,2,王辉虎1,2(),常鹰1,2,马新国3,董仕节1,2
收稿日期:
2019-05-14
出版日期:
2020-02-05
发布日期:
2020-03-12
通讯作者:
王辉虎
作者简介:
张文华(1994—),男,硕士研究生,研究方向为光电催化。E-mail:基金资助:
Wenhua ZHANG1,2(),Liwen DIAN2,Haiyan CHEN2,Wenhua YE1,2,Xiaofeng HU1,2,Huihu WANG1,2(),Ying CHANG1,2,Xinguo MA3,Shijie DONG1,2
Received:
2019-05-14
Online:
2020-02-05
Published:
2020-03-12
Contact:
Huihu WANG
摘要:
半导体WO3具有较小的禁带宽度和良好的稳定性,对可见光具有较强的吸收,在光催化和光电催化领域具有广泛的用途。然而,单一WO3薄膜仍然存在着光生电子-空穴复合率高、光电催化活性与能量转换效率偏低等问题。本文从WO3薄膜光电催化性能的改善及应用两个方面对近年来的研究进行了综述。在WO3薄膜光电催化性能的改善方面,分别从有序纳米结构的构建、离子掺杂与表面修饰进行总结。同时,也归纳总结了WO3薄膜作为光电极在分解水制氢、光电催化还原CO2和降解有机污染物等方面的应用,并提出了WO3薄膜在光电催化过程中存在的问题,指出WO3有序纳米异质结的构建是提高WO3薄膜光电催化活性的有效方法。WO3薄膜光电极的规模制备、廉价助催化剂的使用、光电极的稳定性与耐蚀性是其实际应用过程中需要解决的问题。
中图分类号:
张文华,佃丽雯,陈海燕,叶文华,胡晓峰,王辉虎,常鹰,马新国,董仕节. 氧化钨(WO3)薄膜光电催化性能的改善及应用[J]. 化工进展, 2020, 39(2): 521-532.
Wenhua ZHANG,Liwen DIAN,Haiyan CHEN,Wenhua YE,Xiaofeng HU,Huihu WANG,Ying CHANG,Xinguo MA,Shijie DONG. Improvement on the photoelectrocatalytic performance of tungsten oxide(WO3) thin film and its application prospects[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 521-532.
1 | LEWIS N S. A prospective on energy and environmental science[J]. Energy & Environmental Science, 2019, 12(2): 343-362. |
2 | BYRANVAND M M, KIM T, SONG S, et al. P-type CuI islands on TiO2 electron transport layer for a highly efficient planar perovskite solar cell with negligible hysteresis[J]. Advanced Energy Materials, 2018, 8(5): 1702235. |
3 | VAIANO V, MATARANGOLO M, MURCIA J J, et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag[J]. Applied Catalysis B: Environmental, 2018, 225: 197-206. |
4 | JIANG Z F, WAN W M, LI H M, et al. A hierarchical Z-scheme alpha-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction[J]. Advanced Materials, 2018, 30(10): 1706108. |
5 | ZHOU Y G, ZHANG S, DING Y, et al. Efficient solar energy harvesting and storage through a robust photocatalyst driving reversible redox reactions[J]. Advanced Materials, 2018, 30(31): 1802294. |
6 | 尹莉, 陈德良, 李涛, 等. 贵金属/WO3复合纳米晶的气敏与光催化研究进展[J]. 化工进展, 2012, 31(1): 133-143. |
YIN L, CHEN D L, LI T, et al. Recent progress in noble metal/WO3 composite nanostructures for gas-sensing and photocatalytic applications[J]. Chemical Industry and Engineering Progress, 2012, 31(1): 133-143. | |
7 | KIM T H, HASANI A, LE Q V, et al. NO2 sensing properties of porous Au-incorporated tungsten oxide thin films prepared by solution process[J]. Sensors and Actuators B: Chemical, 2019, 286: 512-520. |
8 | TSAI T H, LIN C T. Rapid preparation of WO3 nanorods via microwave-assisted solvothermal synthesis[J]. Synthesis and Reactivity in Inorganic Metal, 2015, 45(11): 1655-1659. |
9 | SHI Y D, ZHANG Y, TANG K, et al. Designed growth of WO3/PEDOT core/shell hybrid nanorod arrays with modulated electrochromic properties[J]. Chemical Engineering Journal, 2019, 355: 942-951. |
10 | YAMAZAKI S, SHIMIZU D, TANI S, et al. Effect of dispersants on photochromic behavior of tungsten oxide nanoparticles in methylcellulose[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 19889-19896. |
11 | LIANG Y, YANG Y, ZOU C W, et al. 2D ultra-thin WO3 nanosheets with dominant {002} crystal facets for high-performance xylene sensing and methyl orange photocatalytic degradation[J]. Journal of Alloys and Compounds, 2019, 783: 848-854. |
12 | HUANG Y, LI Y, ZHANG G Y, et al. Simple synthesis of 1D, 2D and 3D WO3 nanostructures on stainless steel substrate for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2019, 778: 603-611. |
13 | GHESHIAGHI M G, SEIFZADEH D, SHOGHI P, et al. Electroless Ni-P/nano-WO3 coating and its mechanical and corrosion protection properties[J]. Journal of Alloys and Compounds, 2018, 769: 149-160. |
14 | ZENG Q Y, GAO Y W, LAI L, et al. Highly improving photoelectrocatalytic efficiency and stability of WO3 photoanodes by facile in situ growth of TiO2 branch overlayers[J]. Nanoscale, 2018, 10(28): 13393-13401. |
15 | ROGER I, SHIPMAN M A, SYMES M D. Earth abundant catalysts for electrochemical and photoelectrochemical water splitting[J]. Nature Reviews Chemistry, 2017, 1: 1-13. |
16 | SOLTANI T, TAYYEBI A, LEE B K, Sonochemical driven ultrafast facile synthesis of WO3 nanoplates with controllable morphology and oxygen vacancies for efficient photoelectrochemical water splitting[J]. Ultrasonics Sonochemistry,2019, 50: 230-238. |
17 | YANG Y H, XIE R R, LI H, et al. Photoelectrocatalytic reduction of CO2 into formic acid using WO3-x/TiO2 film as novel photoanode[J]. Transaction of Nonferrous Metals Society of China, 2016, 26(9): 2390-2396. |
18 | HUNGE Y M, YADAV A A, MAHADIK M A, et al. A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 273-281. |
19 | ZHAN F Q, XIE R R, LI W Z, et al. In situ synthesis of g-C3N4/WO3 heterojunction plates array films with enhanced photoelectrochemical performance[J]. RSC Advances, 2015, 5(85): 69753-69760. |
20 | ZHENG F, GUO M, ZHANG M. Hydrothermal preparation and optical properties of orientation-controlled WO3 nanorod arrays on ITO substrates[J]. Crystengcomm, 2013, 15(2): 277-284. |
21 | LU H, YAN Y, ZHANG M, et al. The effects of adjusting pulse anodization parameters on the surface morphology and properties of a WO3 photoanode for photoelectrochemical water splitting[J]. Journal of Solid State Electrochemistry, 2018, 22(7): 2169-2181. |
22 | FERNANDEZ-DOMENE R M, SANCHEZ-TOVAR R, LUCAS-GRANADOS B, et al. Visible light photoelectrodegradation of diuron on WO3 nanostructures[J]. Journal of Environmental Management, 2018, 226: 249-255. |
23 | DONG Z Z, CASSANDRA D E, KEA B H. Investigating oxidation growth routes in the flame synthesis of tungsten-oxide nanowires from tungsten substrates[J]. Combustion and Flame, 2018, 195: 311-321. |
24 | XU S, FU D G, SONG K, et al. One dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting[J]. Chemical Engineering Journal, 2018, 349: 368-375. |
25 | MA Z M, HOU H L, SONG K, et al. Ternary WO3/porous-BiVO4/FeOOH hierarchical architectures: towards highly efficient photoelectrochemical performance[J]. Chemelectrochem, 2018, 5(23): 3660-3667. |
26 | GEORGIEVA J, SOTIROPOULOS S, VALOVA E, et al. Pt doped TiO2/WO3 bilayer catalysts on graphite substrates with enhanced photoelectrocatalytic activity for methanol oxidation under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 346: 70-76. |
27 | KONG Y, SUN H, FAN W, et al. Enhanced photoelectrochemical performance of tungsten oxide film by bifunctional Au nanoparticles[J]. RSC Advances, 2017, 7(25): 15201-15210. |
28 | LI D, TAKEUCHI R, CHANDRA D, et al. Prominent performance for visible-light-driven water oxidation on an in situ N2-intercalated WO3 nanorod photoanode synthesized by a dual functional structure directing agent[J]. Chemsuschem, 2018, 11(7): 1151-1156. |
29 | CORIDAN R H, SHANER M, WIGGENHORM C, et al. Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes[J]. Journal of Physical Chemistry C, 2013, 117(14): 6949-6957. |
30 | LI N X, TENG H C, ZHANG L, et al. Synthesis of Mo-doped WO3 nanosheets with enhanced visible light-driven photocatalytic properties[J]. RSC Advances, 2015, 5(115):95394-95400. |
31 | KALANUR S S, HWANG Y J, CHAE S Y, et al. Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity[J]. Journal of Materials Chemistry A, 2013, 1(10): 3479-3488. |
32 | WANG P, YANG L, DAI B, et al. Nanoplate-like tungsten trioxide (hydrate) films prepared by crystal-seed-assisted hydrothermal reaction[J]. International Journal of Modern Physics B, 2017, 31: 1744072. |
33 | REYES-GIL K R, WIGGENHORN C, BRUNSCHWIG B S, et al. Comparison between the quantum yields of compact and porous WO3 photoanodes[J]. Journal of Physical Chemistry C, 2013, 117(29): 14947-14957. |
34 | WANG F G, DI VALENTIN C, PACCHIONI G. Doping of WO3 for photocatalytic water splitting: hints from density functional theory[J]. Journal of Physical Chemistry C, 2012, 116(16): 8901-8909. |
35 | LIU Y Y, LI Y, LI W Z, et al. Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light[J]. Applied Surface Science, 2012, 258(12): 5038-5045. |
36 | COLE B, MARSEN B, MILLER E, et al. Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting[J]. Journal of Physical Chemistry C, 2008, 112(13): 5213-5220. |
37 | LI D, CHANDRA D, TAKEUCHI R, et al. Dual-functional surfactant-templated strategy for synthesis of an in-situ N2-intercalated mesoporous WO3 photoanode for efficient visible light driven water oxidation[J]. Chemistry-A European Journal, 2017, 23(27): 6596-6604. |
38 | SHEIN I R, IVANOVSKII A L. Ab initio probing of the electronic band structure and Fermi surface of fluorine-doped WO3, as a novel low-Tc. superconductor[J]. Jetp Letters, 2012, 95(2): 66-69. |
39 | YANG Y, JIN G, LI H. Photoelectrochemical properties and photocatalytic activity of fluorine-doped plate-like WO3 from hydrothermal radio-frequency (RF) sputtered tungsten thin films[J]. Nano, 2017, 12(4): 1750041. |
40 | LI D, HUANG W Q, XIE Z, et al. Mechanism of enhanced photocatalytic activities on tungsten trioxide doped with sulfur: dopant-type effects[J]. Modern Physics Letters B, 2016, 30(27): 1650340. |
41 | ALEXANDER J E, KLAVETTER K C, LIN J F, et al. Improved visible light harvesting of WO3 by incorporation of sulfur or iodine: a tale of two Impurities[J]. Chemistry of Materials, 2014, 26(4): 1670-1677. |
42 | BARCZUK P J, KROLIKOWSKA A, LEWERA A, et al. Structural and photoelectrochemical investigation of boron-modified nanostructured tungsten trioxide films[J]. Electrochimica Acta, 2013, 104(8): 282-288. |
43 | ZHANG T, ZHU Z, CHEN H, et al. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study[J]. Nanoscale, 2015, 7(7): 2933-2940. |
44 | SONG K, MA Z, YANG W, et al. Electrospinning WO3 nanofibers with tunable Fe-doping levels towards efficient photoelectrochemical water splitting[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(10): 8338-8346. |
45 | XIAO Y H, XU C Q, ZHANG W D. Facile synthesis of Ni-doped WO3 nanoplate arrays for effective photoelectrochemical water splitting[J]. Journal of Solid State Electrochemistry, 2017, 21(11): 3355-3364. |
46 | KALANUR S S, SEO H. Influence of molybdenum doping on the structural, optical and electronic properties of WO3 for improved solar water splitting[J]. Journal of Colloid and Interface Science, 2018, 509: 440-447. |
47 | KALANUR S S, SEO H. Aligned nanotriangles of tantalum doped tungsten oxide for improved photoelectrochemical water splitting[J]. Journal of Alloys and Compounds, 2019, 785: 1097-1105. |
48 | LIU Y, LI J, LI W, et al. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping[J]. Journal of Physical Chemistry C, 2015, 119(27): 14834-14842. |
49 | 姜子龙. Co-Pi/WO3纳米片光电极的制备及其光电协同降解苯酚[J]. 化工技术与开发, 2017, 46(5): 43-46. |
JIANG Z L. Synthesis of Co-Pi/WO3 nanosheet photoanode and its photoelectrocatalytic degradation of phenol[J]. Technology Development of Chemical Industry, 2017, 46(5): 43-46. | |
50 | ZHANG H W, WANG Y Y, ZHU X G, et al. Bilayer Au nanoparticle-decorated WO3 porous thin films: on-chip fabrication and enhanced NO2 gas sensing performances with high selectivity[J]. Sensors and Actuators B: Chemical, 2019, 280: 192-200. |
51 | MIU D, BIRJEGA R, VIESPE C. Surface acousticwave hydrogen sensors based on nanostructured Pd/WO3 bilayers[J]. Sensors, 2018, 18(11): 3636. |
52 | BOSE R J, IllYASUKUTTY N, TAN K S, et al. Preparation and characterization of Pt loaded WO3 films suitable for gas sensing applications[J]. Applied Surface Science, 2018, 440: 320-330. |
53 | COSTA M J S, COSTA G S, LIMA A E B, et al. Investigation of charge recombination lifetime in γ-WO3 films modified with Ag0 and Pt0 nanoparticles and its influence on photocurrent density[J]. Ionics, 2018, 24: 3291-3297. |
54 | RAMKUMAR S, RAJARAJAN G. Enhanced visible light photocatalytic activity of pristine and silver (Ag) doped WO3 nanostructured thin films[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(11): 12185-12192. |
55 | LEE W J, SHINDE P S, GO G H, et al. Ag grid induced photocurrent enhancement in WO3 photoanodes and their scale-up performance toward photoelectrochemical H2 generation[J]. International Journal of Hydrogen Energy, 2011, 36(9): 5262-5270. |
56 | YAO M N, JIA X, LIU Y, et al. Surface plasmon resonance enhanced polymer solar cells by thermally evaporating Au into buffer layer[J]. ACS Applied Materials & Interfaces, 2015, 7(33): 18866-18871. |
57 | KIM H N, MINGGU L J, JAAFAR N A, et al. Enhanced plasmonic photoelectrochemical response of Au sandwiched WO3 photoanodes[J]. Solar Energy Materials and Solar Cells, 2017, 172: 361-367. |
58 | LEE B R, LEE M G, PARK H, et al. All-solution-processed WO3/BiVO4 core-shell nanorod arrays for highly stable photoanodes[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20004-20012. |
59 | ZHAO W F, WANG X W, MA L Z, et al. WO3/p-type-GR layered materials for promoted photocatalytic antibiotic degradation and device for mechanism insight[J]. Nanoscale Research Letters, 2019, 14: 146. |
60 | MA Z Z, SONG K, WANG L, et al. WO3/BiVO4 type-II heterojunction arrays decorated with oxygen-deficient ZnO passivation layer: a highly efficient and stable photoanode[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 889-897. |
61 | HUANG W C, WANG J X, BIAN L, et al. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction[J]. Physical Chemistry Chemical Physics, 2018, 20(25): 17268-17278. |
62 | XIE T, ZHENG T, WANG R L, et al. A promising CuOx/WO3 p-n heterojunction thin-film photocathode fabricated by magnetron reactive sputtering[J]. International Journal of Hydrogen Energy, 2019, 44(8): 4062-4071. |
63 | HU Z F, XU M K, SHEN Z R, et al. A nanostructured chromium (Ⅲ) oxide/tungsten (Ⅵ) oxide p-n junction photoanode toward enhanced efficiency for water oxidation[J]. Journal of Materials Chemistry A, 2015, 3(26): 14046-14053. |
64 | RONG F, WANG Q Y, LU Q F, et al. Rational fabrication of hierarchical Z-scheme WO3/Bi2WO6 nanotubes for superior photoelectrocatalytic reaction[J]. Chemistryselect, 2019, 4(9): 2676-2684. |
65 | WANG C H, QIN D D, SHAN D L, et al. Assembly of g-C3N4-based type Ⅱ and Z-scheme heterojunction anodes with improved charge separation for photoelerojuncion water oxidation[J]. Physical Chemistry Chemical Physics, 2017, 19(6): 4507-4515. |
66 | KEVIN S. Metal oxide photoelectrodes for solar fuel production, surface traps, and catalysis[J]. Journal of Physical Chemistry Letters, 2013, 4(10): 1624-1633. |
67 | HISATOMI T, KUBOTA J, DOMEN K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting[J]. Chemical Society Reviews, 2014, 43(22): 7520-7535. |
68 | CHEN X P, ZHANG Z X, CHI L N, et al. Recent advances in visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and reaction systems[J]. Nano-Micro Letters, 2016, 8(1): 1-12. |
69 | 苏进展, 李明涛, 郭烈锦. 超声喷雾热分解WO3薄膜的光电化学制氢研究[J]. 西安交通大学学报, 2008, 42(5): 617-621. |
SU J Z, LI M T, GUO L J. Characterization of ultrasonic spray pyrolysis deposited WO3 thin film for Photoelectrochemical splitting of water[J]. Journal of Xi'an Jiaotong University, 2008, 42(5): 617-621. | |
70 | SU J Z, GUO L J, BAO N Z, et al. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting[J]. Nano Letters, 2011, 11(5): 1928-1933. |
71 | TAYYEBEH S, AHMAD T, HYEONSEON H, et al. A novel growth control of nanoplates WO3 photoanodes with dual oxygen and tungsten vacancies for efficient photoelectrochemical water splitting performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 39-49. |
72 | FAN X L, WANG T, XUE H R, et al. Synthesis of tungsten trioxide/hematite core-shell nanoarrays for efficient photoelectrochemical water splitting[J]. Chemelectrochem, 2019, 6(2): 543-551. |
73 | SHAO M F, NING F Y, WEI M, et al. Hierarchical nanowire arrays based on ZnO core-layered double hydroxide shell for largely enhanced photoelectrochemical water splitting[J]. Advanced Functional Materials, 2014, 24(5): 580-586. |
74 | CHEMELEWSKI W D, LEE H C, LIN J F, et al. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting[J]. Journal of the American Chemical Society, 2014, 136(7): 2843-2850. |
75 | 王冰, 赵美明, 周勇, 等. 光催化还原二氧化碳制备太阳燃料研究进展及挑战[J]. 中国科学: 技术科学, 2017(3): 70-80. |
WANG B, ZHAO M M, ZHOU Y, et al. Recent progress and challenges in research of photocatalytic reduction of CO2 to solar fuels[J]. Scientia Sinica: Techologica, 2017(3): 70-80. | |
76 | CHANG X X, WANG T G, GONG J L. CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts[J]. Energy & Environmental Science, 2016, 9(7): 2177-2196. |
77 | ZHANG N, LONG R, GAO C, et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels[J]. Science China Materials, 2018, 61(6): 771-805. |
78 | LIU W H, YANG Y H, ZHAN F Q, et al. Ultrafast fabrication of nanostructure WO3 photoanodes by hybrid microwave annealing with enhanced photoelectrochemical and photoelectrocatalytic activities[J]. International Journal of Hydrogen Energy, 2018, 43(18): 8770-8778. |
79 | ZHAN F Q, LIU W H, LI W Z, et al. Boric acid assisted synthesis of WO3 nanostructures with highly reactive (002) facet and enhanced photoelectrocatalytic activity[J]. Journal of Materials Science-Materials in Electronics, 2017, 28(18): 13836-13845. |
80 | YANG Y H, ZHAN F Q, LI H, et al. In situ Sn-doped WO3 films with enhanced photoelectrochemical performance for reducing CO2 into formic acid[J]. Journal of Solid State Electrochemistry, 2017, 21(8): 2231-2240. |
81 | MOHITE S V, GANBAVLE V V, RAJPURE K Y. Solar photoelectrocatalytic activities of rhodamine-B using sprayed WO3 photoelectrode[J]. Journal of Alloys and Compounds, 2016, 655: 106-113. |
82 | HUNGE Y M, YADAV A A, MAHADIK M A, et al. A highly efficient visible-light responsive sprayed WO3/FTO photoanode for photoelectrocatalytic degradation of brilliant blue[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85: 273-281. |
83 | WEN J, LIU C J, DU Y, et al. Enhanced photocatalytic degradation of methyl orange by CdS quantum dots sensitized platelike WO3 photoelectrodes[J]. Journal of Central South University, 2015, 22(12): 4551-4559. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[6] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[12] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[13] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[14] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[15] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |