1 |
陈丹, 杨蓉, 张卫华, 等. 有机金属骨架材料在电化学储能领域中的研究进展[J]. 化工进展, 2018, 37(2): 628-636.
|
|
CHENDan, YANGRong, ZHANGWeihua, et al. Research progress of MOFs-based materials in electrochemical energy storage[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 628-636.
|
2 |
COOKT R, ZHENGY R, STANGP J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials[J]. Chemical Reviews, 2012, 113(1): 734-777.
|
3 |
FURUKAWAH, CORDOVAK E, O’KEEFFEM, et al. The chemistry and applications of metal-organic frameworks[J] . Science, 2013, 341(6149): 1230444.
|
4 |
ELSAIDIS K, MOHAMEDM H, BANERJEED, et al. Flexibility in metal-organic frameworks:a fundamental understanding[J]. Coordination Chemistry Reviews, 2018, 358: 125-152.
|
5 |
LEE J Y, FARHAO K, ROBERTSJ, et al. Metal-organic framework materials as catalysts[J]. Chemical Society Reviews, 2009, 38(5): 1450-1459.
|
6 |
CORMAA, GARCÍAH, LLABRÉSI, et al. Engineering metal organic frameworks for heterogeneous catalysis[J]. Chemical Reviews, 2010, 110(8): 4606-4655.
|
7 |
DHAKSHINAMOORTHYA, LIZ, GARCIAH. Catalysis and photocatalysis by metal organic frameworks[J]. Chemical Society Reviews, 2018, 47(22): 8134-8172.
|
8 |
刘丽丽, 台夕市, 刘美芳, 等. 构筑手性金属有机骨架的方法及其在不对称催化中的应用[J]. 化工进展, 2015, 34(4): 997-10066.
|
|
LIULili, TAIXishi, LIUMeifang, et al. Method of creating chiral metal-organic frameworks and its use in asymmetric catalysis[J]. Chemical Industry and Engineering Progress, 2015, 34(4): 997-10066.
|
9 |
SCHLICHTEK, KRATZKET, KASKELS. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2[J]. Microporous and Mesoporous Materials, 2004, 73(1/2): 81-88.
|
10 |
HORIKES, DINCAM, TAMAKIK, et al. Size-selective Lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites[J]. Journal of the American Chemical Society, 2008, 130(18): 5854-5855.
|
11 |
郭瑞梅, 白金泉, 张恒, 等. 金属-有机骨架材料在催化氧化反应中的应用[J]. 化学进展, 2016, 28(2/3): 232-243.
|
|
GUORuimei, BAIJinquan, ZHANGHeng, et al. Metal-organic frameworks for catalytic oxidation[J]. Progress in Chemistry, 2016, 28(2/3): 232-243.
|
12 |
LAURIERK G M, VERMOORTELEF, AMELOOTR, et al. Iron (Ⅲ)-based metal-organic frameworks as visible light photocatalysts[J]. Journal of the American Chemical Society, 2013, 135(39): 14488-14491.
|
13 |
GAOJ, MIAOJ, LIP Z, et al. A p-type Ti(Ⅳ)-based metal-organic framework with visible-light photo-response[J]. Chemical Communications, 2014, 50(29): 3786-3788.
|
14 |
梁祥, 陈莲芬, 张利, 等. 金属-有机框架在光催化中的应用[J]. 科学通报, 2018, 63(3): 248-265.
|
|
LIANGXiang, CHENLianfen, ZHANGLi, et al. Applications of metal-organic frameworks in photocatalysis[J]. Chinese Science Bulletin, 2018, 63(3): 248-265.
|
15 |
CHANGJ S, HWANGJ S, JHUNGS H, et al. Nanoporous metal-containing nickel phosphates: a class of shape-selective catalyst[J]. Angewandte Chemie: International Edition, 2004, 43(21): 2819-2822.
|
16 |
ZHANGX, XAMENA F X LI, CORMAA. Gold(Ⅲ)-metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts[J]. Journal of Catalysis, 2009, 265(2): 155-160.
|
17 |
SEO J S, WHANGD, LEE H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404(6781): 982.
|
18 |
HASEGAWAS, HORIKES, MATSUDAR, et al. Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis[J]. Journal of the American Chemical Society, 2007, 129(9): 2607-2614.
|
19 |
HWANGY K, HONGD Y, CHANGJ S, et al. Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation[J]. Angewandte Chemie, 2008, 120(22): 4212-4216.
|
20 |
GASCONJ, AKTAYU, HERNANDEZ-ALONSOM D, et al. Amino-based metal-organic frameworks as stable, highly active basic catalysts[J]. Journal of Catalysis, 2009, 261(1): 75-87.
|
21 |
DHAKSHINAMOORTHYA, GARCIAH. Catalysis by metal nanoparticles embedded on metal-organic frameworks[J]. Chemical Society Reviews, 2012, 41(15): 5262-5284.
|
22 |
FUJIEK, KITAGAWAH. Ionic liquid transported into metal-organic frameworks[J]. Coordination Chemistry Reviews, 2016, 307: 382-390.
|
23 |
MAJEWSKIM B, HOWARTHA J, LIP, et al. Enzyme encapsulation in metal-organic frameworks for applications in catalysis[J]. CrystEngComm, 2017, 19(29): 4082-4091.
|
24 |
DHAKSHINAMOORTHYA, ASIRIA M, GARCIAH. Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis[J]. ACS Catalysis, 2017, 7(4): 2896-2919.
|
25 |
王丽苹, 王公应. 羧基配体金属有机骨架材料作为催化剂的研究进展[J]. 分子催化, 2015, 29(3): 275-287.
|
|
WANGLiping, WANGGongying. Progress in metal-organic frameworks based on the carboxyl ligands as the catalyst[J]. Journal of Molecular Catalysis(China), 2015, 29(3): 275-287.
|
26 |
GANGUK K, MADDILAS, JONNALAGADDAS B. A review on synthesis, crystal structure and functionality of naphthalenedicarboxylate ligated metal-organic frameworks[J]. Inorganica Chimica Acta, 2017, 466: 308-323.
|
27 |
董浩, 侯梅芳. 酰胺类化合物合成的最新研究进展[J]. 有机化学, 2017, 37(2): 267-283.
|
|
DONGHao, HOUMeifang. Recent progress in synthesis of amides[J]. Chinese Journal of Organic Chemistry, 2017, 37(2): 267-283.
|
28 |
GUNANATHANC, BEN-DAVIDY, MILSTEIND. Direct synthesis of amides from alcohols and amines with liberation of H2[J]. Science, 2007, 317(5839): 790-792.
|
29 |
沙文彬, 黄文华. 硼化合物催化的直接酰胺化反应研究进展[J]. 化学与生物工程, 2013, 30(6): 11-16.
|
|
SHAWenbin, HUANGWenhua. Research progress of direct amide formation catalyzed by boron compounds[J]. Chemistry & Bioengineering, 2013, 30(6): 11-16.
|
30 |
盛国柱, 张炜. 酰胺官能团构建方法研究新进展[J]. 有机化学, 2013, 33(11): 2271-2282.
|
|
SHENGGuozhu, ZHANGWei. New advances of the methods of amide function group for construction[J]. Chinese Journal of Organic Chemistry, 2013, 33(11): 2271-2282.
|
31 |
ALLENC L, CHHATWALA R, WILLIAMSJ M J. Direct amide formation from unactivated carboxylic acids and amines[J]. Chemical Communications, 2012, 48(5): 666-668.
|
32 |
ATKINSONB N, CHHATWALA R, LOMAXH V, et al. Transamidation of primary amides with amines catalyzed by zirconocene dichloride[J]. Chemical Communications, 2012, 48(95): 11626-11628.
|
33 |
BAIY, DOUY, XIEL H, et al. Zr-based metal-organic frameworks: design, synthesis, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8): 2327-2367.
|
34 |
杜峰, 李鹂. UiO-66 (Zr) 系列 MOFs 催化材料的制备及在乳酸乙酯合成中的应用[J]. 化工进展, 2015, 34(11): 3938-3943.
|
|
DUFeng, LILi. Preparation of UiO-66(Zr) MOFs and their application as catalysts for the synthesis of ethyl lactate[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3938-3943.
|
35 |
SAIKIAU P, HUSSAINF L, SURIM, et al. Selective N-acetylation of aromatic amines using acetonitrile as acylating agent[J]. Tetrahedron Letters, 2016, 57(10): 1158-1160.
|
36 |
AERRYS, KUMARA, SAXENAA, et al. Chemoselective acetylation of amines and thiols using monodispersed Ni-nanoparticles[J]. Green Chemistry Letters and Reviews, 2013, 6(2): 183-188.
|
37 |
OUARNAS, K’TIRH, LAKROUTS, et al. An eco-friendly and highly efficient route for N-acylation under catalyst-free conditions[J]. System, 2015, 31(2): 913-919.
|
38 |
SHARLEYD D S, WILLIAMSJ M J. Acetic acid as a catalyst for the N-acylation of amines using esters as the acyl source[J]. Chemical Communications, 2017, 53(12): 2020-2023.
|
39 |
CAVKAJ H, JAKOBSENS, OLSBYEU, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
|
40 |
FURUKAWAH, GÁNDARAF, ZHANGY B, et al. Water adsorption in porous metal-organic frameworks and related materials[J]. Journal of the American Chemical Society, 2014, 136(11): 4369-4381.
|
41 |
VALENZANOL, CIVALLERIB, CHAVANS, et al. Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and Theory[J]. Chemistry of Materials, 2011, 23(7): 1700-1718.
|
42 |
VERMOORTELEF, VANDICHELM, VOORDE BVAN DE, et al. Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks[J]. Angewandte Chemie: International Edition, 2012, 51(20): 4887-4890.
|