化工进展 ›› 2019, Vol. 38 ›› Issue (06): 2714-2725.DOI: 10.16085/j.issn.1000-6613.2018-1948
付学祥1,张登峰1(),降文萍2,伦增珉3,4,赵春鹏3,4,王海涛3,4,李艳红1
收稿日期:
2018-09-26
出版日期:
2019-06-05
发布日期:
2019-06-05
通讯作者:
张登峰
作者简介:
付学祥(1993—),男,硕士研究生,主要研究方向为非常规天然气开采与二氧化碳地质封存。
基金资助:
Xuexiang FU1,Dengfeng ZHANG1(),Wenping JIANG2,Zengmin LUN3,4,Chunpeng ZHAO3,4,Haitao WANG3,4,Yanhong LI1
Received:
2018-09-26
Online:
2019-06-05
Published:
2019-06-05
Contact:
Dengfeng ZHANG
摘要:
煤层气主要成分为甲烷(CH4),其主要以吸附态形式存在于煤层中。明确煤体理化性质和煤体孔隙结构及CH4吸附性能间构效关系,对于高效开采CH4资源至为关键。为此,本文阐明了煤体理化性质对其孔隙结构和CH4吸附性能的作用规律,并指出了后续研究趋势。分析表明:煤体微孔结构和其CH4吸附容量之间呈正线性相关性;煤体介/大孔主要影响CH4在煤层内部的吸附/扩散速率。具有墨水瓶形孔或富含镜质体的煤体通常具有较强CH4吸附性能。煤中矿物质和水分对煤体吸附性能产生不利影响。煤中小分子有机物的抽提能够提高煤体孔隙表面积和孔容积,进而提升煤体吸附性能。为了深入研究煤体理化性质及其吸附性能的作用规律,后续需开展以下工作:研究煤体孔隙结构参数和煤体吸附/解吸性能之间的耦合作用关系;利用多重分形理论精确揭示煤体内复杂的孔隙结构信息;优化并建立考虑煤体非均质性的BET和BJH等孔隙结构参数计算模型;以煤基质表面含氧官能团在煤体孔隙内部的赋存空间为切入点,阐明煤体官能团和孔隙结构对其CH4吸附性能的协同作用规律;从理论模拟和实验科学入手,阐明煤层中水分对煤体孔隙结构的影响;建立更为科学的含水煤体吸附性能评价方法。
中图分类号:
付学祥, 张登峰, 降文萍, 伦增珉, 赵春鹏, 王海涛, 李艳红. 煤体理化性质对其孔隙结构和甲烷吸附性能影响的研究进展[J]. 化工进展, 2019, 38(06): 2714-2725.
Xuexiang FU, Dengfeng ZHANG, Wenping JIANG, Zengmin LUN, Chunpeng ZHAO, Haitao WANG, Yanhong LI. Influence of physicochemical properties of coals on pore morphology and methane adsorption: a perspective[J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2714-2725.
数学模型 | 数学形式 | 适用性 | 基于模型分析实例 | 参考文献 |
---|---|---|---|---|
Avnir模型 | V/V m=K[ln(P 0/P)]- r D=3-r | P/P 0>0.5时,拟合过程中会出现线性偏移 | 计算煤体内表面分形维数,定量描述煤体内部孔结构特征 | [ |
FHH模型 | ln(V)=Kln[ln(P 0/P)]+C D=K+3 | 适于描述原生煤中8~217nm的 孔隙非均质性 | 根据N2吸附等温线确定了煤体在不同相对压力下 的分形维数 | [ |
修正的FHH模型 | V/V m=K[ln(P 0/P)] A D=3+A | 适用于0<P/P 0<0.5范围 | 分形维数与煤层表面不规则性及煤体的CH4吸附能力 呈正线性 | [ |
Neimark模型 | lgS D=2-A | 适用于0<P/P 0<0.5范围 | 计算得到煤体表面分形维数范围是2.57~2.80,意味着 煤体表面不规则且具有分形特征 | [ |
Menger模型 | D={ln[dVP ( r ) /dP(r)]-lnα}lnP(r)+4 | 不适用煤体孔隙结构的非均质性 | 煤体在一定的孔径范围内才具有分形特征 | [ |
Sierpinski模型 | V=α(P-Pt )3 D | 适合描述煤体纳米孔分形特征 | 表明不同类型构造煤体表面不连续性和粗糙度的差异性较大 | [ |
表1 基于煤体N2吸附数据的孔隙表面分形数学模型
数学模型 | 数学形式 | 适用性 | 基于模型分析实例 | 参考文献 |
---|---|---|---|---|
Avnir模型 | V/V m=K[ln(P 0/P)]- r D=3-r | P/P 0>0.5时,拟合过程中会出现线性偏移 | 计算煤体内表面分形维数,定量描述煤体内部孔结构特征 | [ |
FHH模型 | ln(V)=Kln[ln(P 0/P)]+C D=K+3 | 适于描述原生煤中8~217nm的 孔隙非均质性 | 根据N2吸附等温线确定了煤体在不同相对压力下 的分形维数 | [ |
修正的FHH模型 | V/V m=K[ln(P 0/P)] A D=3+A | 适用于0<P/P 0<0.5范围 | 分形维数与煤层表面不规则性及煤体的CH4吸附能力 呈正线性 | [ |
Neimark模型 | lgS D=2-A | 适用于0<P/P 0<0.5范围 | 计算得到煤体表面分形维数范围是2.57~2.80,意味着 煤体表面不规则且具有分形特征 | [ |
Menger模型 | D={ln[dVP ( r ) /dP(r)]-lnα}lnP(r)+4 | 不适用煤体孔隙结构的非均质性 | 煤体在一定的孔径范围内才具有分形特征 | [ |
Sierpinski模型 | V=α(P-Pt )3 D | 适合描述煤体纳米孔分形特征 | 表明不同类型构造煤体表面不连续性和粗糙度的差异性较大 | [ |
煤样 | 温度/oC | n L,dry/mL·g-1 | n L,moist /mL·g-1 | 含水率 升幅/% | CH4吸附量降幅/% |
---|---|---|---|---|---|
YZG2 | 30 | 39.97 | 27.07 | 2.01 | 32.27 |
30 | 39.97 | 15.04 | 5.02 | 62.37 | |
Lh7 | 30 | 23.22 | 19.99 | 0.66 | 13.91 |
30 | 23.22 | 15.18 | 1.83 | 34.63 | |
Yl10 | 30 | 26.99 | 22.93 | 0.88 | 15.04 |
30 | 26.99 | 19.62 | 1.77 | 27.31 | |
HZ29 | 30 | 32.86 | 28.29 | 1.01 | 13.91 |
30 | 32.86 | 22.48 | 2.80 | 31.59 | |
WLH8 | 30 | 52.80 | 48.01 | 1.38 | 9.07 |
30 | 52.80 | 31.39 | 5.66 | 40.55 | |
DFS4 | 25 | 12.164 | 11.563 | 5.09 | 49.41 |
40 | 11.201 | 10.725 | 5.09 | 42.50 | |
SP11 | 35 | 16.870 | 15.210 | 2.05 | 9.84 |
45 | 14.320 | 13.890 | 2.05 | 30.03 | |
SH3 | 30 | 37.148 | 35.240 | 0.64 | 51.36 |
40 | 33.458 | 32.450 | 0.64 | 30.13 |
表2 含水率对煤体CH4饱和吸附容量的影响[74,75]
煤样 | 温度/oC | n L,dry/mL·g-1 | n L,moist /mL·g-1 | 含水率 升幅/% | CH4吸附量降幅/% |
---|---|---|---|---|---|
YZG2 | 30 | 39.97 | 27.07 | 2.01 | 32.27 |
30 | 39.97 | 15.04 | 5.02 | 62.37 | |
Lh7 | 30 | 23.22 | 19.99 | 0.66 | 13.91 |
30 | 23.22 | 15.18 | 1.83 | 34.63 | |
Yl10 | 30 | 26.99 | 22.93 | 0.88 | 15.04 |
30 | 26.99 | 19.62 | 1.77 | 27.31 | |
HZ29 | 30 | 32.86 | 28.29 | 1.01 | 13.91 |
30 | 32.86 | 22.48 | 2.80 | 31.59 | |
WLH8 | 30 | 52.80 | 48.01 | 1.38 | 9.07 |
30 | 52.80 | 31.39 | 5.66 | 40.55 | |
DFS4 | 25 | 12.164 | 11.563 | 5.09 | 49.41 |
40 | 11.201 | 10.725 | 5.09 | 42.50 | |
SP11 | 35 | 16.870 | 15.210 | 2.05 | 9.84 |
45 | 14.320 | 13.890 | 2.05 | 30.03 | |
SH3 | 30 | 37.148 | 35.240 | 0.64 | 51.36 |
40 | 33.458 | 32.450 | 0.64 | 30.13 |
1 | 常广涛,王一帆,董特特 . 煤层气吸附解吸研究进展综述[J]. 石化技术,2015,22(7):125-126. |
CHANG G T , WANG Y F , DONG T T . An overview of research progress of adsorption and desorption of coal-bed methane[J]. Petrochemical Technology,2015,22(7):125-126. | |
2 | ZHANG D F , ZHANG J , HUO P L ,et al . Influences of SO2,NO,and CO2 exposure on pore morphology of various rank coals: implications for coal-fired flue gas sequestration in deep coal seams[J]. Energy & Fuels,2016,30(7):5911-5921. |
3 | WANG Q Q , ZHANG D F , WANG H H ,et al . Influence of CO2 exposure on high-pressure methane and CO2 adsorption on various rank coals: implications for CO2 sequestration in coal seams[J]. Energy & Fuels,2015,29(6):3785-3795. |
4 | 周国富,杨加宁 . 煤炭消费、经济增长与废气排放:基于中国的实证研究[J]. 统计教育,2008,11:3-8. |
ZHOU G F , YANG J N . An empirical study on the relationships among coal consumption, economic growth and the emission of exhaust gas in China[J]. Statistical Thinktank,2008,11:3-8. | |
5 | 张锦,张登峰,霍培丽,等 . 煤基质表面官能团对二氧化碳及甲烷吸附性能作用规律的研究进展[J]. 化工进展,2017,36(6):1977-1988. |
ZHANG J , ZHANG D F , HUO P L ,et al . Functional groups on coal matrix surface dependences of carbon dioxideand methane adsorption:a perspective[J]. Chemical Industry and Engineering Progress,2017,36(6):1977-1988. | |
6 | SING K S W , EVERETT D H , HAUL R A W ,et al . Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Application Chemistry,1985,57(4):603-619. |
7 | CAI Y D , LIU D M , PAN Z J ,et al . Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China[J]. Fuel,2013,103:258-268. |
8 | WANG G C , JU Y W , YAN Z F ,et al . Pore structure characteristics of coal-bearing shale using fluid invasion methods:a case study in the Huainan-Huaibei coalfield in China[J]. Marine and Petroleum Geology,2015,62:1-13. |
9 | ZHANG Z , QIN Y , ZHUANG X G ,et al . Poroperm characteristics of high-rank coals from Southern Qinshui basin by mercury intrusion, SEM-EDS, nuclear magnetic resonance and relative permeability analysis[J]. Journal of Natural Gas Science and Engineering,2018,51:116-128. |
10 | SHAN C A , ZHANG T S , LIANG X ,et al . On the fundamental difference of adsorption-pores systems between vitrinite- and inertinite-rich anthracite derived from the southern Sichuan basin, China[J]. Journal of Natural Gas Science and Engineering,2018,53:32-44. |
11 | LI Y , ZHANG C , TANG D Z ,et al . Coal pore size distributions controlled by the coalification process:an experimental study of coals from the Junggar, Ordos and Qinshui basins in China[J]. Fuel,2017,206:352-363. |
12 | QAJAR A , DAIGLE H , PRODANOVIC M . The effects of pore geometry on adsorption equilibrium in shale formations and coal-beds: lattice density functional theory study[J]. Fuel,2016,163:205-213. |
13 | LIU Y K , KANG J H , ZHOU F B ,et al . Effects of maceral compositions of coal on methane adsorption heat[J]. Geofluids,2018:15. |
14 | 陈亮,樊少武,李海涛,等 . 煤体孔隙结构特征及其对含气性的影响[J]. 煤炭科学技术,2017,45(11):126-132. |
CHEN L , FAN S W , LI H T ,et al . Pore structure characteristics of coal and its influences to gas bearing[J]. Coal Science and Technology,2017,45(11):126-132. | |
15 | JIAN K , FU X H , DING Y M ,et al . Characteristics of pores and methane adsorption of low-rank coal in China[J]. Journal of Natural Gas Science and Engineering,2015,27:207-218. |
16 | WANG F , CHENG Y P , LU S Q ,et al . Influence of coalification on the pore characteristics of middle high rank coal[J]. Energy & Fuels,2014,28(9):5729-5736. |
17 | MAHAJAN O P . CO2 surface area of coals:the 25-year paradox[J]. Carbon,1991,29(6):735-742. |
18 | 孟召平,刘珊珊,王保玉,等 . 不同煤体结构煤的吸附性能及其孔隙结构特征[J]. 煤炭学报,2015,40(8):1865-1870. |
MENG Z P , LIU S S , WANG B Y ,et al . Adsorption capacity and its pore structure of coals with different coal body structure[J]. Journal of China Coal Society,2015,40(8):1865-1870. | |
19 | 钟玲文,张慧,员争荣,等 . 煤的比表面积孔体积及其对煤吸附能力的影响[J]. 煤田地质与勘探,2002(3):26-29. |
ZHONG L W , ZHANG H , YUAN Z R ,et al . Specific surface area, pore volume and their impact on adsorption capacity for coal[J]. Coal Geology & Exploration,2002(3):26-29. | |
20 | WANG B Y , QIN Y , SHEN J ,et al . Pore structure characteristics of low- and medium-rank coals and their differential adsorption and desorption effects[J]. Journal of Petroleum Science and Engineering,2018,165:1-12. |
21 | 李洪美 . 活性炭纤维对有机废气吸附性能的研究[D]. 大连:大连理工大学,2008. |
LI H M . The study on adsorption properties of organic waste gases by activated caibon fiber[D]. Dalian :Dalian University of Technology,2008. | |
22 | WANG L , YU Q C . The effect of moisture on the methane adsorption capacity of shales: a study case in the eastern Qaidam Basin in China[J]. Journal of Hydrology,2016,542:487-505. |
23 | WHITE C M , SMITH D H , JONES K L ,et al . Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-a review[J]. Energy & Fuels,2005,19(3):659-724. |
24 | WANG Q Q , LI W , ZHANG D F ,et al . Influence of high-pressure CO2 exposure on adsorption kinetics of methane and CO2 on coals[J]. Journal of Natural Gas Science and Engineering,2016,34:811-822. |
25 | ZHANG S H , TANG S H , ZHANG J P ,et al . Pore structure characteristics of China sapropelic coal and their development influence factors[J]. Journal of Natural Gas Science and Engineering,2018,53:370-384. |
26 | TAO S , CHEN S D , TANG D Z ,et al . Material composition,pore structure and adsorption capacity of low-rank coals around the first coalification jump:a case of eastern Junggar basin,China[J]. Fuel,2018,211:804-815. |
27 | SHEN J , ZHAO J C , QIN Y ,et al . Water imbibition and drainage of high rank coals in Qinshui basin, China[J]. Fuel,2018,211:48-59. |
28 | FAN J J , JU Y W , LIU S B ,et al . Micropore structure of coals under different reservoir conditions and its implication for coalbed methane development[J]. Journal of China Coal Society,2013,38(3):441-447. |
29 | MASTALERZ M , HE L L , MELNICHENKO Y B ,et al . Porosity of coal and shale:insights from gas adsorption and SANS/USANS techniques[J]. Energy & Fuels,2012,26(8):5109-5120. |
30 | YAO Y B , LIU D M , TANG D Z ,et al . Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals[J]. International Journal of Coal Geology,2008,73(1):27-42. |
31 | NIE B S , LIU X F , YANG L L ,et al . Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel,2015,158:908-917. |
32 | SONG W H , YAO J ,MA J S,et al . Grand canonical Monte Carlo simulations of pore structure influence on methane adsorption in micro-porous carbons with applications to coal and shale systems[J]. Fuel,2018,215:196-203. |
33 | CLARKSON C R , BUSTIN R M . The effect of pore structure and gas pressure upon the transport properties of coal:a laboratory and modeling study. 2. Adsorption rate modeling[J]. Fuel,1999,78(11):1345-1362. |
34 | MANDELBROT B . How long is the coast of Britain? Statistical self-similarity and fractional dimension[J]. Science,1967,156(3775):636-638. |
35 | REICH M H , RUSSO S P , SNOOK I K . The application of SAXS to determine the fractal properties of porous carbon-based materials[J]. Journal of Colloid and Interface Science,1990,135:353-362. |
36 | FRIESEN W I , MIKULA R J . Fractal dimensions of coal particles[J]. Journal of Colloid and Interface Science,1987,120:263-271. |
37 | ZHAO Y X , PENG L . Investigation on the size and fractal dimension of nano-pore in coals by synchrotron small angle X-ray scattering[J]. Chinese Science Bulletin,2017,62(21):2416-2427. |
38 | AVNIR D , JARONIEC M . An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials[J]. Langmuir,1989,5(6):1431-1433. |
39 | 李子文,郝志勇,庞源,等 . 煤的分形维数及其对瓦斯吸附的影响[J]. 煤炭学报,2015,40(4):863-869. |
LI Z W , HAO Z Y , PANG Y ,et al . Fractal dimensions of coal and their influence on methane adsorption[J]. Journal of China Coal Society,2015,40(4): 863-869. | |
40 | ZHU J F , LIU J Z , YANG Y M ,et al . Fractal characteristics of pore structures in 13 coal specimens: relationship among fractal dimension,pore structure parameter,and slurry ability of coal[J]. Fuel Processing Technology,2016,149:256-267. |
41 | NEIMARK A V , HANSON M , UNGER K K . Fractal analysis of the distribution of high-viscosity fluids in porous supports[J]. The Journal of Physical Chemistry,1993,97(22):6011-6015. |
42 | 姜文,唐书恒,张静平,等 . 基于压汞分形的高变质石煤孔渗特征分析[J]. 煤田地质与勘探,2013,41(4):9-13. |
JIANG W , TANG S H , ZHANG J P ,et al . Characteristics of pore permeability of highly metamorphic bone coal[J]. Coal Geology & Exploration,2013,41(4):9-13. | |
43 | 宋昱,姜波,李凤丽,等 . 低-中煤级构造煤纳米孔分形模型适用性及分形特征[J]. 地球科学,2018,43(5):1611-1622. |
SONG Y , JIANG B , LI F L ,et al . Applicability of fractal models and nanopores’ fractal characteristics for low-middle rank tectonic deformed coals[J]. Earth Science,2018,43(5):1611-1622. | |
44 | SONG H , MIN L ,JUN X,et al . Fractal characteristic of three Chinese coals[J]. Fuel,2004,83(10):1307-1313. |
45 | CLARKSON C R , SOLANO N , BUSTIN R M ,et al . Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,and mercury intrusion[J]. Fuel,2013,103:606-616. |
46 | 王倩倩 . 超临界二氧化碳流体对煤体理化性质及吸附性能的作用规律[D]. 昆明:昆明理工大学,2016. |
WANG Q Q . Influences of supercritical CO2 fluid on phy-chemical poperties and adsorption performance of coals[D]. Kunming:Kunming University of Science and Technology,2016. | |
47 | MOORE T A . Coalbed methane:a review[J]. International Journal of Coal Geology,2012,101:36-81. |
48 | BUSTIN R M , CLARKSON C R . Geological controls on coalbed methane reservoir capacity and gas content[J]. International Journal of Coal Geology,1998,38(1/2):3-26. |
49 | LAMBERSON M N , BUSTIN R M . Coalbed methane characteristics of gates formation coals,northeastern british-columbia-effect of maceral composition[J]. AAPG Bulletin-American Association of Petroleum Geologists,1993,77(12):2062-2076. |
50 | 钟玲文,张新民 . 煤的吸附能力与其煤化程度和煤岩组成间的关系[J]. 煤田地质与勘探,1990,4:29-36,71-74. |
ZHONG L W , ZHANG X M . Coalification degree and petrographic constituent dependences of adsorpion capacity of coals[J]. Coal Geology & Exploration,1990,4:29-36,71-74. | |
51 | 李夏伟,刘大锰,蔡益栋,等 . 高煤级煤储层含水性特征及其对吸附能力的影响[J]. 地学前缘,2018,25(4):237-244. |
LI X W , LIU D M , CAI Y D ,et al . Moisture content characteristics of high rank coal reservoir and its influence on adsorption capacity[J]. Earth Science Frontiers,2018,25(4):237-244. | |
52 | DUTTA P , BHOWMIK S ,DAS S . Methane and carbon dioxide sorption on a set of coals from India[J]. International Journal of Coal Geology,2011,85(3/4):289-299. |
53 | HUANG L , NING Z F , WANG Q ,et al . Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery[J]. Applied Energy,2018,210:28-43. |
54 | 马东民 . 煤储层的吸附特征实验综合分析[J]. 北京科技大学学报,2003,4:291-294. |
MA D M . Synthetical analysis on adsorbing characteristic experiment of coal seams[J]. Journal of University of Science and Technology Beijing,2003,4:291-294. | |
55 | LAXMINARAYANA C , CROSDALE P J . Role of coal type and rank on methane sorption characteristics of Bowen basin, Australia coals[J]. International Journal of Coal Geology,1999,40(4):309-325. |
56 | GENSTERBLUM Y , MERKEL A , BUSCH A ,et al . High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture[J]. International Journal of Coal Geology,2013,118:45-57. |
57 | GUO D Y , GUO X J . The influence factors for gas adsorption with different ranks of coals[J]. Adsorption Science & Technology,2018,36(3/4):904-918. |
58 | ZHANG D F , CUI Y J , LI S G ,et al . Supercritical pure methane and CO2 adsorption on various rank coals of China: experiments and modeling[J]. Energy & Fuels,2011,25(4):1891-1899. |
59 | GÜRDAL G , NAMIK Y M . Pore volume and surface area of the Carboniferous coals from the Zonguldak basin (NW Turkey) and their variations with rank and maceral composition[J]. International Journal of Coal Geology,2001,48(1/2):133-144. |
60 | LEVINE J R . Coalification: the evolution of coal as source rock and reservoir rock. In hydrocarbons from coal[C] |
//LAW B E , RICE D D ,Eds . AAPG Studies in Geology 38.American Association of Petroleum Geologists:Tulsa,OK,1993. | |
61 | BAE J S, BHATIA S K , BHATIA S K ,et al . Pore accessibility of methane and carbon dioxide in coals[J]. Energy & Fuels,2009,23(5/6) :3319-3327. |
62 | YAN J W . Low molecular weight compounds contained in coal and the behaviors of methane adsorbed by coal at isothermal high-pressure condition[C]//YOU Z. Editor. Hydraulic Equipment and Support Systems for Mining, Stafa-Zurich: Trans Tech Publications Ltd. 2013:584-588. |
63 | LI Z K , WEI X Y , YANG Z S ,et al . Characterization of extracts from geting bituminous coal[J]. Analytical Letters,2015,48(9):1494-1501. |
64 | GATHITU B B , CHEN W Y , MCCLURE M . Effects of coal interaction with supercritical CO2: physical structure[J]. Industrial & Engineering Chemistry Research,2009,48(10):5024-5034. |
65 | ZHANG K Z , CHEN Y P , LI W ,et al . Influence of supercritical CO2 on pore structure and functional groups of coal:implications for CO2 sequestration[J]. Journal of Natural Gas Science and Engineering,2017,40:288-298. |
66 | SUN W J , WANG N , CHU W ,et al . The role of volatiles and coal structural variation in coal methane adsorption[J]. Science Bulletin,2015,60(5):532-540. |
67 | 何选明 . 煤化学[M]. 北京:冶金工业出版社,2010:40-41 |
HE X M . Coal chemistry[M]. Beijing:Metallurgical Industry Press,2010:40-41 | |
68 | 王忠乐 . 煤中矿物质的特性及其对焦炭结构和性质的影响研究[D]. 马鞍山:安徽工业大学,2014. |
WANG Z L . A study on the characteristics of the minerals in coal and their effects on structures and properties of the coke[D]. Ma’anshan:Anhui University of Technology,2014. | |
69 | YANG H R , JIN J , LIU D Y ,et al . The influence of vermiculite on the ash deposition formation process of Zhundong coal[J]. Fuel,2018,230:89-97. |
70 | 侯玉华,施海艳,姬莉,等 . 工业煤粉中矿物质的分布规律[J]. 煤炭转化,2010,33(4):18-20. |
HOU Y H , SHI H Y , JI L ,et al . Distribution of mineral matters in industrial pulverized coals[J]. Coal Conversion,2010,33(4):18-20. | |
71 | 刘贝,黄文辉,敖卫华,等 . 沁水盆地南部煤中矿物赋存特征及其对煤储层物性的影响[J]. 现代地质,2014,28(3):645-652. |
LIU B , HUANG W H , AO W H ,et al . Occurrence characteristics of minerals and their influences on physical properties of coal reservoirs in Southern Qinshui basin[J]. Geoscience,2014,28(3):645-652. | |
72 | KESHAVARZ A , SAKUROVS R , GRIGORE M ,et al . Effect of maceral composition and coal rank on gas diffusion in Australian coals[J]. International Journal of Coal Geology,2017,173:65-75. |
73 | LIU K Q , OSTADHASSAN M , ZOU J ,et al . Multifractal analysis of gas adsorption isotherms for pore structure characterization of the Bakken Shale[J]. Fuel,2018,219:296-311. |
74 | CHEN M Y , CHENG Y P , LI H R ,et al . Impact of inherent moisture on the methane adsorption characteristics of coals with various degrees of metamorphism[J]. Journal of Natural Gas Science and Engineering,2018,55:312-320. |
75 | 刘厚宁 . 煤润湿性及其对煤层气吸附/解吸的影响[D]. 西安:西安科技大学,2015. |
LIU H N . Wettability of coal as well as impact on the adsorption desorption of coalbed methane[D]. Xi’an :Xi’an University of Science and Technology,2015. | |
76 | GENSTERBLUM Y , MERKEL A , BUSCH A ,et al . High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture[J]. International Journal of Coal Geology,2013,118:45-57. |
77 | CROSDALE P J , BEAMISH B B , VALIX M . Coalbed methane sorption related to coal composition[J]. International Journal of Coal Geology,1998,35(1/2/3/4):147-158. |
78 | FAIZ M M , COOK A C . Influence of coal type, rank and depth on the gas retention capacity of coal in the Southern Coalfield, NSW, Gas in Australian coals[C] //BAMBERRY W J , DEPERS A M . (eds.). University of New South Wales,NSW,Australia,1991:19-29. |
79 | PASHIN J C , MCINTYRE M R . Temperature-pressure conditions in coalbed methane reservoirs of the Black Warrior basin:implications for carbon sequestration and enhanced coalbed methane recovery[J]. International Journal of Coal Geology,2003,54(3/4):167-183. |
[1] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[2] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[3] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 宋伟涛, 宋慧平, 范朕连, 樊飙, 薛芳斌. 粉煤灰在防腐涂料中的研究进展[J]. 化工进展, 2023, 42(9): 4894-4904. |
[6] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[7] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[8] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[9] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[10] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[11] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[12] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[13] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[14] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[15] | 郑昕, 贾里, 王彦霖, 张靖超, 陈世虎, 乔晓磊, 樊保国. 污泥与煤泥混烧对重金属固留特性的影响[J]. 化工进展, 2023, 42(6): 3233-3241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |