化工进展 ›› 2019, Vol. 38 ›› Issue (9): 3969-3978.DOI: 10.16085/j.issn.1000-6613.2018-2476

• 化工过程与装备 • 上一篇    下一篇

臭氧催化氧化反应器模拟与分析

邹思宇1(),凌二锁2,乐淑荣2,孙胜鹏1,吴张雄1,陈晓东1,吴铎1,肖杰1()   

  1. 1. 苏州大学材料与化学化工学部化工与环境工程学院,苏州市绿色化工重点实验室,江苏 苏州 215123
    2. 苏州科环环保科技有限公司,江苏 苏州 215300
  • 收稿日期:2018-12-26 出版日期:2019-09-05 发布日期:2019-09-05
  • 通讯作者: 肖杰
  • 作者简介:邹思宇(1995—),男,博士研究生,研究方向为多尺度建模与模拟。E-mail:syzou@stu.suda.edu.cn
  • 基金资助:
    江苏省自然科学基金优秀青年基金(BK20170062);苏州大学与苏州科环环保科技有限公司联合研发中心项目;江苏优势学科建设工程(PAPD)

Numerical simulation and analysis of the catalytic ozonation reactor

Siyu ZOU1(),Ersuo LING2,Shurong LE2,Shengpeng SUN1,Zhangxiong WU1,Xiaodong CHEN1,Duo WU1,Jie XIAO1()   

  1. 1. Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, China
    2. Koovine Environmental Protection Technology Co. , Ltd. , Suzhou 215300, Jiangsu, China
  • Received:2018-12-26 Online:2019-09-05 Published:2019-09-05
  • Contact: Jie XIAO

摘要:

臭氧催化氧化法是一种高效的污水处理技术,是目前污水高级处理的主要手段之一。传统的建模方法无法研究反应器内污水浓度的时空分布和操作条件对反应器的影响,本研究利用计算流体力学(CFD),耦合多孔介质流动与传质和化学反应动力学多物理场模型,研究臭氧催化氧化过程中目标污染物浓度随时间和空间的分布情况,计算结果与实验结果有良好的一致性。进一步研究臭氧浓度和流量、循环水流量、催化剂层高度、催化剂颗粒大小等对臭氧催化氧化处理废水效率的影响,评估出最优的实验方案。结果表明,在不改变当前反应器主体结构的情况下,最优的操作条件是:臭氧浓度30~40mg/L,臭氧进口流量40~60mL/min,循环水量200~250mL/min,催化剂层填充高度600~800mm,催化剂颗粒半径大小为2mm。该研究有助于理解、设计和优化污水处理反应器。

关键词: 计算流体力学, 多物理场耦合模型, 传递过程, 臭氧催化氧化, 化学反应器

Abstract:

Catalytic ozonation is an efficient wastewater treatment method, which is one of the widely adopted advanced treatment methods. The traditional modeling method is limited to the process of sewage treatment and cannot be used to investigate the influence of operating conditions on reactors or the spatial and temporal distribution of pollutant concentration. This study develops a multi-physics model for a catalytic ozonation reactor by coupling governing equations of the free and porous media flow, mass transport, and catalytic reactions. The model is capable of revealing the temporal and spatial distributions of key process parameters (e.g., the concentrations of pollutant and dissolved ozone, fluid velocity), which are difficult to be obtained through experiments. The simulation results on treatment efficiency are in good agreement with the experimental results. By resorting to this model, the influence of different operating conditions on treatment efficiency can be systematically analyzed towards optimized operation. The results show that without changing the key structure of the reactor, the optimal operating conditions are ozone concentration of 30—40mg/L, ozone inlet flow rate of 40—60mL/min, water circulation flow rate of 200—250mL/min, catalyst layer height of 600—800mm, and catalyst radius of 2mm. This study is helpful for understanding wastewater treatment reactor and optimal design of the reactor.

Key words: computational fluid dynamics(CFD), multi-physics modeling, transport processes, ozone catalytic oxidation, chemical reactors

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn