化工进展 ›› 2019, Vol. 38 ›› Issue (02): 949-955.DOI: 10.16085/j.issn.1000-6613.2018-0167

• 材料科学与技术 • 上一篇    下一篇

钛酸锂/石墨烯复合负极材料的制备及电化学性能

张利辉1,2,4(),徐宇兴1,3(),刘振法2(),魏爱佳2,李文2   

  1. 1. 中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190
    2. 河北省科学院能源研究所,河北 石家庄 050081
    3. 中科廊坊过程工程研究院,河北 廊坊 065001
    4. 中国科学院大学,北京 100049
  • 收稿日期:2018-01-19 修回日期:2018-08-30 出版日期:2019-02-05 发布日期:2019-02-05
  • 通讯作者: 徐宇兴,刘振法
  • 作者简介:<named-content content-type="corresp-name">张利辉</named-content>(1977—),男,硕士,副研究员,主要从事锂离子电池电极材料的制备与开发。E-mail:<email>zlhkxy@126.com</email>。|徐宇兴,博士,项目研究员,硕士生导师,主要从事锂离子电池和超级电容器电极材料关键技术研发及产业化应用研究。E-mail:<email>yxxu@ipe.ac.cn</email>|刘振法,博士,研究员,博士生导师,主要从事能源材料及资源化利用研究。E-mail:<email>lzf63@sohu.com</email>
  • 基金资助:
    河北省重点基础研究(17964407D);河北省科技计划(17394411D,16294403D)

Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries

Lihui ZHANG1,2,4(),Yuxing XU1,3(),Zhenfa LIU2(),Aijia WEI2,Wen LI2   

  1. 1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
    2. Institute of Energy Resources, Hebei Academy of Sciences, Shijiazhuang 050081, Hebei, China
    3. Zhongke Langfang Institute of Process Engineering, Langfang 065001, Hebei, China
    4. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-01-19 Revised:2018-08-30 Online:2019-02-05 Published:2019-02-05
  • Contact: Yuxing XU,Zhenfa LIU

摘要:

以Li2CO3、锐钛矿TiO2和石墨烯为原料,采用固相球磨及喷雾干燥相结合的方法制备钛酸锂和钛酸锂/石墨烯复合负极材料。用X射线衍射(XRD)、拉曼光谱、扫描电子显微镜(SEM)表征了样品的晶体结构及形貌。通过恒流充放电测试样品的电化学性能,考察不同石墨烯添加量对钛酸锂材料电化学性能的影响。当石墨烯添加量质量分数为1%时,钛酸锂/石墨烯复合负极材料(LTO-G-2)具有优异的倍率性能及循环稳定性。在0.2C、0.5C、1C、3C、5C和10C倍率下的充电比容量为172.9mA·h/g、165.7mA·h/g、163.5mA·h/g、157.4mA·h/g、154.0mA·h/g和143.5mA·h/g。5C倍率下经历200次循环,容量保持率为94.8%。循环伏安测试(CV)表明LTO-G-2样品的极化程度是最小的。交流阻抗测试(EIS)结果显示LTO-G-2的电荷转移阻抗(69.6Ω)小于纯的钛酸锂的电荷转移阻抗(140.5Ω)。

关键词: 固相球磨, 喷雾干燥, 钛酸锂, 石墨烯, 负极材料

Abstract:

Li4Ti5O12 and Li4Ti5O12/graphene composite have been successfully prepared by a solid-state ball milling and spray drying method using Li2CO3, TiO2 and graphene as starting materials. X-ray diffraction (XRD), scanning electron microscopy (SEM) and Raman spectroscopy were used to confirm the structure and morphology of the materials. The effects of the amount of graphene on the electrochemical properties of Li4Ti5O12 were investigated by the galvanostatic charge-discharge tests. When 1% graphene was added, the Li4Ti5O12/graphene composite (LTO-G-2) exhibited excellent performance with the charge capacities of 172.9mA·h/g, 165.7mA·h/g, 163.5mA·h/g, 157.4mA·h/g, 154.0mA·h/g and 143.5mA·h/g at rates of 0.2C, 0.5C, 1C, 3C, 5C and 10C, respectively. Moreover, LTO-G-2 showed a charge capacity retention of 94.8% after 200 cycles at a rate of 5C. Cyclic voltammetry tests (CV) showed that LTO-G-2 had the smallest polarization. Electrochemical impedance (EIS) tests showed that the charge transfer resistance of LTO-G-2 (69.6Ω) was lower than that of neat LTO (140.5Ω).

Key words: solid-state ball milling method, spray drying, lithium titanate, graphene, anode material

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn