[1] CHEN B, LI S, IMAI H, et al. Load transfer strengthening in carbon nanotubes reinforced metal matrix composites via in-situ tensile tests[J]. Composites Science & Technology, 2015, 113:1-8.
[2] DONG S, ZHOU J, HUI D, et al. Size dependent strengthening mechanisms in carbon nanotube reinforced metal matrix composites[J]. Composites Part A:Applied Science & Manufacturing, 2015, 68:356-364.
[3] JAHEDI M, PAYDAR M H, KNEZEVIC M. Enhanced microstructural homogeneity in metal-matrix composites developed under high-pressure-double-torsion[J]. Materials Characterization, 2015, 104:92-100.
[4] SHEDBALE A S, SINGH I V, MISHRA B K.Heterogeneous and homogenized models for predicting the indentation response of particle reinforced metal matrix composites[J]. International Journal of Mechanics & Materials in Design, 2017, 13(4):531-552.
[5] 周生刚, 徐阳, 马双双,等. 碳纳米管增强金属基复合材料研究综述[J]. 昆明理工大学学报(自然科学版), 2017(4):14-19. ZHOU Shenggang,XU Yang,MA Shuangshuang,et al. Research overview of carbon nanotube reinforced metal matrix composites[J]. Journal of Kunming University of Science and Technology, 2017(4):14-19.
[6] 张文毓. 金属基复合材料的现状与发展[J]. 装备机械, 2017(2):79-83. ZHANG Wenyu. The status and development of metal matrix composites[J]. Equipment Machinery, 2017(2):79-83.
[7] 曹玉鹏, 戴志强, 刘建涛,等. 金属基复合材料研究进展及展望[J]. 铸造技术, 2017(10):2319-2322. CAO Yupeng, DAI Zhiqiang, LIU Jiantao, et al. Research progress and prospect of metal matrix composites[J]. Foundry Technology, 2017(10):2319-2322.
[8] YOO J T, JU Y W, JANG Y R, et al. One-pot surface engineering of battery electrode materials with metallic SWCNT-enriched, ivy-like conductive nanonets[J]. Journal of Materials Chemistry A, 2017, 5(24):12103-12112.
[9] RYBAK A, BOITEUX G, MELIS F, et al. Conductive polymer composites based on metallic nanofiller as smart materials for current limiting devices[J]. Composites Science & Technology, 2010, 70(2):410-416.
[10] 梁甦青. 具有高机械稳定性和高导电能力的柔性导电材料的制备与应用研究[D]. 深圳:深圳大学, 2017. LIANG Suqing. The preparation and application of flexible conductive materials with high mechanical stability and high conductivity[D]. Shenzhen:Shenzhen University, 2017.
[11] 张康, 褚向前, 刘丽华, 等. 介质/金属/介质透明导电薄膜研究进展[J]. 真空科学与技术学报, 2017(11):38-45. ZHANG Kang, CHU Xiangqian, LIU Lihua, et al. Research progress of transparent conductive film of medium/metal/medium[J]. Chinese Journal of Vacuum Science and Technology, 2017(11):38-45.
[12] 孙良芳, 李儒, 邸江涛,等. (PEDOT-PSS)-碳纳米管复合膜硅基太阳能电池[J]. 复合材料学报, 2017, 34(11):2385-2391. SUN Liangfang, LI Ru, DI Jiangtao, et al. (PEDOT-PSS)-Carbon nanotube composite film silicon-based solar cell[J]. Acta Materiae Compositae Sinica, 2017, 34(11):2385-2391.
[13] 陈欣琦. 金属(银, 铜, 镍和钴)纳米线的制备及其生长机理[D]. 武汉:华中师范大学, 2011. CHEN Xinqi. Preparation and growth mechanism of metallic (silver, copper, nickel and cobalt) nanowires[D]. Wuhan:Central China Normal University, 2011.
[14] FEI Meng, SONG Jin. The solution growth of copper nanowires and nanotubes is driven by screw dislocations[J]. Nanoletters, 2012, 12:234-239.
[15] 张育新, 黄明, 董萌, 等. Cu纳米线的制备及应用进展[J]. 化工进展, 2012, 31(8):1756-1766. ZHANG Yuxin, HUANG Ming, DONG Meng, et al. Preparation and application of Cu nanowires[J]. Chemical Industry and Engineering Progress, 2012, 31(8):1756-1766.
[16] 陈媛媛. Cu纳米线及其相关结构的制备、表征与催化性能研究[D]. 杭州:浙江工业大学, 2014. CHEN Yuanyuan. Preparation, characterization and catalytic performance of Cu nanowires and their associated structures[D]. Hangzhou:Zhejiang University of Technology, 2014.
[17] ZHAO F G, KONG Y T, XU Z W, et al. High-performance flexible transparent conductive films achieved by cooperation between 1D copper nanowires and 2D graphene materials[J]. Journal of Materials Chemistry C, 2017, 5(22):5509-5516.
[18] 汪苇. 一维铜纳米线的定向生长、控制以及性能研究[D]. 大连:大连工业大学, 2014. WANG Wei. Study on directional growth, control and performance of one-dimensional copper nanowires[D]. Dalian:Dalian Polytechnic University, 2014.
[19] 高琪, 阚彩侠, 李俊龙,等. 铜纳米线的液相制备及其表面修饰研究进展[J]. 物理化学学报, 2016, 32(7):1604-1622. GAO Qi, KAN Caixia, LI Junlong, et al. Research progress on liquid phase preparation and surface modification of copper nanowires[J]. Acta Physico-Chimica Sinica, 2016, 32(7):1604-1622.
[20] MA P C, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites:a review[J]. Composites Part A:Applied Science & Manufacturing, 2010, 41(10):1345-1367.
[21] DE VOLDER M F, TAWFICK S H, BAUGHMAN R H, et al. Carbon nanotubes:present and future commercial applications.[J]. Science, 2013, 339(6119):535-543.
[22] 张强, 黄佳琦, 赵梦强, 等. 碳纳米管的宏量制备及产业化[J]. 中国科学:化学, 2013, 43(6):641-666. ZAHNG Qiang, HUANG Jiaqi, ZHAO Mengqiang, et al. Preparation and industrialization of carbon nanotube macros[J]. Scientia Sinica Chimica, 2013, 43(6):641-666.
[23] 白洁. 碳化硅纳米线/碳纳米管复合薄膜的制备与性能研究[D]. 哈尔滨:哈尔滨工业大学, 2015. BAI Jie. Preparation and properties of silicon carbide nanowire/carbon nanotube composite films[D]. Harbin:Harbin Institute of Technology, 2015.
[24] YIN Z, CHO S, YOU D J, et al. Copper nanowire/multi-walled carbon nanotube composites as all-nanowire flexible electrode for fast-charging/discharging lithium-ion battery[J]. Nano Research, 2017, 11(2):1-11.
[25] SABBAGHI N, NOROOZIFAR M, TOHIDINIA M, et al. Modified glassy carbon electrode with galvanized copper nanowires by palladium and carbon nanotubes for speciation of dihydroxybenzene Isomers[J]. International Journal of Electrochemical Science, 2017, 12(9):8777-8792.
[26] 李琼. 基于铜纳米材料的非酶有机磷农残电化学传感检测研究[D]. 重庆:重庆大学, 2014. LI Qiong. Research on non-enzymatic organophosphorus pesticide residue electrochemical sensing based on copper nanomaterials[D]. Chongqing:Chongqing University, 2014.
[27] LI Y, SUNDARARAJ U. Comparative study on electrical properties of copper nanowire/polypropylene and carbon nanotube/polypropylene composites[J]. AIChE Journal, 2015, 61(1):296-303.
[28] 刘巍, 刘平, 陈小红, 等. 铜基碳纳米管复合薄膜电沉积制备工艺[J]. 材料科学与工艺, 2016, 24(4):18-24. LIU Wei, LIU Ping, CHEN Xiaohong, et al. Preparation of copper-based carbon nanotube composite thin film electrodeposition[J]. Materials Science and Technology, 2016, 24(4):18-24. |