[1] 华政, 梁风, 姚耀春. 电动汽车电池的发展现状与趋势[J].化工进展, 2017, 36(8):2874-2881. HUA Zheng, LIANG Feng, YAO Yaochun. Status and development trend for battery of electric vehicles[J]. Chemical Industry and Engineering Progress, 2016, 35(8):2874-2881.
[2] LIU Jifei, DAI Jianfeng, WANG Qing, et al. Synthesis of nanostructured mat as flexible electrode for advanced lithium ion batteries via electrospinning[J]. Crystal Research & Technology, 2018, 53(2):1700112.
[3] TABORGA P, BRITO I, GRABER T A. Effect of additives on size and shape of lithium carbonate crystals[J]. Journal of Crystal Growth, 2017, 460:5-12.
[4] 宋昌斌, 李润超.碳酸锂在水中的溶解度和超溶解度的测定及热力学分析[J].化工进展, 2016, 35(8):2350-2354. SONG Changbin, LI Runchao. Measurement and thermodynamic analysis of the solubility and supersolubility of lithium carbonate in water[J]. Chemical Industry and Engineering Progress, 2016, 35(8):2350-2354.
[5] GUZZO P L, SANTOS J B, DAVID R C. Particle size distribution and structural changes in limestone ground in planetary ball mill[J]. International Journal of Mineral Processing, 2014, 126(1):41-48.
[6] ELHAM A, MOHAMMAD G, HAMID A. Production of CuSn10 bronze powder from machining chips using jet milling[J]. International Journal of Advanced Manufacturing Technology, 2017, 92(1/2/3/4):663-672.
[7] 蔡艳华, 马冬梅, 彭汝芳, 等. 超音速气流粉碎技术应用研究新进展[J]. 化工进展, 2008, 27(5):671-675. CAI Yanhua, MA Dongmei, PENG Rufang, et al. New research progress of supersonic speed airflow grinding technology[J]. Chemical Industry and Engineering Progress, 2008, 27(5):671-675.
[8] 崔岩. 气流粉碎过程的破碎理论研究及计算机仿真系统开发[D]. 上海:华东理工大学, 2011. CUI Yan. Smash theory research and development of computer simulation system of jet milling process[D]. ShangHai:East China University of Science and Technology, 2011.
[9] RAMARAO N V, HADJIPANAYIS G C. Influence of jet milling process parameters on particle size, phase formation and magnetic properties of MnBi alloy[J]. Journal of Alloys and Compounds, 2015, 629:80-83.
[10] 殷鹏飞, 张蓉, 李银冰, 等. 气流粉碎/静电分散中粉体颗粒运动规律的数值模拟研究[J]. 稀有金属材料与工程, 2014, 43(12):3052-3057. YIN Pengfei, ZHANG Rong, LI Yinbing, et al. Numerical simulation of the dynamic process of micropowder during jet milling/electrostatic dispersion[J]. Rare Metal Materials and Engineering, 2014, 43(12):3052-3057.
[11] SHAIBANI M E, GHAMBARI M. Characterization and comparison of gray cast iron powder produced by target jet milling and high energy ball milling of machining scraps[J]. Powder Technol., 2011, 212(1):278-283.
[12] RODNIANSKI V, KRAKAUER N, DARWESH K, et al. Aerodynamic classification in a spiral jet mill[J]. Powder Technology, 2013, 243:110-119.
[13] 杨裴, 夏俊玲, 石硕年, 等. 气流粉碎技术在尼莫地平微粉生产中的应用研究[J]. 无机盐工业, 2005, 37(1):50-52. YANG Pei, XIA Junling, SHI Shuonian, et al. Application of airflow pulverization in the production of nimodipine powder[J]. Inorganic Chemicals Industry, 2005, 37(1):50-52.
[14] PICOT A, LACROIX C. Effect of micronization on viability and thermotolerance of probiotic freeze-dried cultures[J]. International Dairy Journal, 2003,13(6):455-462.
[15] GODET-MORAND L, CHAMAYOU A, DODDS J. Talcgrinding in an opposed air jet mill:start-up, product quality and production rate optimization[J]. Power Technology, 2002, 128(2/3):306-313.
[16] 陈海焱. 磨料微粉专用加工系统研究[J]. 金刚石与磨料具工程, 2001, 121(1):31-33. CHEN Haiyan. Research on the special system of processing abrasive fine powder[J]. Diamond & Abrasives Engineering, 2001, 121(1):31-33.
[17] SPOTTER C, ELSKAMP F, HENNIG M, et al. Separation curves of screening and air classifying processes at low material loadings[J]. Chemie Ingenieur Technik, 2017, 89(12):1726-1738.
[18] 陈海焱, 陈文梅, 胥海伦. 气流分级机操作参数对分级性能的影响[J]. 工程科学与技术, 2006, 38(3):87-91. CHEN Haiyan, CHEN Wenmei, XU Hailun. Effects of the operation parameters on the air classifier performance[J]. Advanced Engineering Sciences, 2006, 38(3):87-91.
[19] 刘雪东, 卓震. 超细气流粉碎分级系统产品粒径的确定与控制[J]. 石油化工高等学校学报,2001,14(1):60-63. LIU Xuedong, ZHUO Zhen. Determination and control of product size for a ultrafine milling classifying closed loop system[J]. Journal of Petrochemical Universities,2001,14(1):60-63. |