[1] 张自杰, 林荣忱. 排水工程(下册)[M]. 北京:中国建筑工业出版社, 2000. ZHANG Z J, LIN R C. Drainage engineering[M]. Beijing:China Building Industry Press, 2000.
[2] 秦麟源. 废水生物处理[M]. 上海:同济大学出版社, 1989. QIN L Y. Wastewater biological treatment[M]. Shanghai:Tongji University Press, 1989.
[3] VOSS M A, AHMED T, SEMMENS M J. Long-term performance of parallel-flow, bubbleless, hollow-fiber-membrane aerators[J]. Water Environment Research, 1999, 71(1):23-30.
[4] VAXELAIRE J, ROCHE N, PROST C. Oxygen transfer in activated sludge surface-aerated process[J]. Environmental Technology, 1995, 16(3):279-285.
[5] MARROT B, BARRIOS-MARTINEZ A, MOULIN P, et al. Experimental study of mass transfer phenomena in a cross flow membrane bioreactor:aeration and membrane separation[J]. Engineering in Life Sciences, 2005, 5(5):409-414.
[6] 北京师范大学. 无机化学[M]. 4版. 北京:高等教育出版社, 2003. Beijing Normal University. Inorganic chemistry[M]. 4th ed. Beijing:Higher Education Press, 2003.
[7] 申泮文. 近代化学导论上[M]. 北京:高等教育出版社, 2008. SHEN P W. Introduction to modern chemistry[M]. Beijing:Higher Education Press, 2008.
[8] 竺际舜. 无机化学[M]. 北京:科学出版社, 2008. ZHU J S. Inorganic chemistry[M]. Beijing:Science Press, 2008.
[9] 华南理工大学无机化学教研室. 无机化学[M]. 北京:化学工业出版社, 2001. South China University of Technology of Inorganic Chemistry Department. Inorganic chemistry[M]. Beijing:Chemical Industry Press, 2001.
[10] 付晓泰, 王振平, 卢双舫. 气体在水中的溶解机理及溶解度方程[J]. 中国科学, 1996(2):124-130. FU X T, WANG Z P, LU S F. Gas dissolved mechanism and solubility equation in water[J]. Science in China, 1996(2):124-130.
[11] 刘载荣, 周志华. 非极性气体在水中的溶解性和单位体积极化率判据[J]. 南京师大学报(自然科学版), 1991(3):47-51. LIU Z R, ZHOU Z H. Solubility of nonpolar gases in water and criterion of polarizability per unit volume[J]. Journal of Nanjing University(Natural Science), 1991(3):47-51.
[12] 刘星. 曝气技术中氧传质影响因素的实验研究[D]. 大连:大连理工大学, 2008. LIU X. The experimental study on the influence factors of oxygen transfer in aeration system[D]. Dalian:Dalian University of Technology, 2008.
[13] 吴超飞, 韦朝海, 梁世中. 废水处理生物流化床中O2传递特性的研究[J]. 环境科学与技术, 1996(1):13-16. WU C F, WEI C H, LIANG S Z. Study on oxygen transfer characteristics in wastewater treatment biological fluidized bed[J]. Environmental Science and Technology, 1996(1):13-16.
[14] 孙从军, 陈季华. 水温对氧转移速率的影响研究[J]. 环境科学研究, 1998(4):15-17. SUN C J, CHEN J H. Effect of water temperature on oxygen transfer rate[J]. Environmental Science Research, 1998(4):15-17.
[15] 王红星, 纪志永, 李鑫钢, 等. 膜法供氧的传质过程研究[J]. 化学工程, 2008(2):33-36. WANG H X, JI Z Y, LI X G, et al. Study on mass transfer process of bubble free aeration by using membrane[J]. Chemical Engineering, 2008(2):33-36.
[16] 韦聪, 李磊, 吕文英, 等. 工业废水CODCr测定方法与技术发展过程分析[J]. 中国测试, 2017(7):1-9. WEI C, LI L, LV W, et al. Analysis of the development of the industrial wastewater CODCr determination method and technology[J]. China Measurement & Test, 2017(7):1-9.
[17] 王伟松, 钱建芳, 王新荣. 表面活性剂在分散体系中的应用现状及发展趋势[J]. 中国高新技术企业, 2010(24):189-190. WANG W S, QIAN J F, WANG X R. Application status and development trend of surfactant in dispersion system[J]. China High-tech Enterprises, 2010(24):189-190.
[18] HESKETH R P, ETCHELLS A W, RUSSELL T W F. Bubble breakage in pipeline flow[J]. Chemical Engineering Science, 1991, 46(1):1-9.
[19] KIM Y K, RA D G. Water surface contacting cover system-the basic study for improving the oxygen transfer coefficient and the BOD removal capacity[J]. Water Research, 2005, 39(8):1553-1559.
[20] 刘亚, 林逢凯, 胥峥. 表面活性物质强化活性污泥系统作用的研究[J]. 净水技术, 2009(5):34-38. LIU Y, LIN F K, XU Z. Invigoration effect of activated sludge plant by adding surface active agent[J]. Water Purification Technology, 2009(5):34-38.
[21] 曹敬华, 明欲晓. 压力对加压生物反应器氧转移的影响[J]. 中国给水排水, 2002(9):34-36. CAO J H, MING Y X. Effect of pressure on oxygen transfer in pressurized bioreactor[J]. China Water & Wastewater, 2002(9):34-36.
[22] 张诗华, 郑俊. 加压生物氧化技术在废水处理中的应用及研究进展[J]. 水处理技术, 2010(8):10-15. ZHANG S H, ZHENG J. Application and research development of technology with pressurized biological oxidation in wastewater treatment[J]. Technology of Water Treatment, 2010(8):10-15.
[23] 曹亚玲, 巩有奎, 李国新. 射流曝气-压力式接触氧化塔氧传质特性研究[J]. 河北师范大学学报(自然科学版), 2008, 32(6):794-797. CAO Yaling, GONG Youkui, LI Guoxin. Characteristics of oxygen transformation in the aeration-pressureized biological contact oxidation process[J]. Journal of Hebei Normal University (Natural Science Edition), 2008, 32(6):794-797.
[24] 吴慧英, 施周, 宋力, 等. 加压生物反应器结合气浮处理医院污水应用研究[J]. 水处理技术, 2013(4):66-69. WU Huiying, SHI Zhou, SONG Li, et al. Applied research on hospital sewage treatment by pressurized aeration bio-reactor combination with flolation[J]. Technology of Water Treatment, 2013(4):66-69.
[25] BURRIS V L, LITTLE J C. Bubble dynamics and oxygen transfer in a hypolimnetic aerator[J]. Water Science and Technology, 1998, 37(2):293-300.
[26] MCGINNIS D F, LITTLE J C. Predicting diffused-bubble oxygen transfer rate using the discrete-bubble model[J]. Water Research, 2002, 36(18):4627-4635.
[27] 张炎, 黄为民. 气泡大小对反应器内氧传递系数的影响[J]. 应用化工, 2005(12):734-736. ZHANG Y, HUANG W M. Effect of bubble size on the oxygen transfer coefficient in reactor[J]. Applied Chemical Industry, 2005(12):734-736.
[28] 韦朝海, 焦向东, 陈焕钦. 生物好氧流化床废水处理技术研究进展[J]. 环境科学与技术, 1998(4):5-9. WEI C H, JIAO X D, CHEN H Q. Advances in the technology of wastewater treatment by aerobic biological fluidized bed[J]. Environmental Science and Technology, 1998(4):5-9.
[29] BOLONG N, ISMAIL A F, SALIM M R, et al. A review of the effects of emerging contaminants in wastewater and options for their removal[J]. Desalination, 2009, 239(1/2/3):229-246.
[30] ALKHADDAR R M, PHIPPS D A, CHENG C. Research prospects for aerobic biological liquid waste treatment for reduction of carbon load[R]. 2005.
[31] 中华人民共和国住房和城乡建设部. 室外排水设计规范(2014年版):GB50014-2006[S]. 北京:中国计划出版社, 2014. Ministry Housing and Urban-rural Development of the People's Republic of China. Code for design of outdoor wastewater engineering(2014 ed.):GB50014-2006[S]. Beijing:China Planning Press, 2014.
[32] GERMAN ATV-DVWK rules and standards. Standard ATV-DVWK-A 131E. Dimensioning of single-stage activated sludge plants[S/OL]. 2000.[2018-01-15]. https://wenku.baidu.com/view/170207d084254b35eefd3408.html.
[33] GERMAIN E, STEPHENSON T. Biomass characteristics, aeration and oxygen transfer in membrane bioreactors:their interrelations explained by a review of aerobic biological processes[J]. Reviews in Environmental Science and Bio/Technology, 2005, 4(4):223-233.
[34] MULLER E B, STOUTHAMER A H, VERSEVELD H W, et al. Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration[J]. Water Research, 1995, 29(4):1179-1189.
[35] KRAMPE J, KRAUTH K. Oxygen transfer into activated sludge with high MLSS concentrations[R]. 2003.
[36] ROSENBERGER S, KUBIN K, KRAUME M. Rheology of activated sludge in membrane bioreactors[J]. Engineering in Life Sciences, 2003, 151(2):195-200.
[37] KRAUSE S, CORNEL P, WAGNER M. Comparison of different oxygen transfer testing procedures in full-scale membrane bioreactors[J]. Water Science and Technology, 2003, 47(12):169-176.
[38] GERMAIN E, NELLES F, DREWS A, et al. Biomass effects on oxygen transfer in membrane bioreactors[J]. Water Research, 2007, 41(5):1038-1044.
[39] HENKEL J, LEMAC M, WAGNER M, et al. Oxygen transfer in membrane bioreactors treating synthetic greywater[J]. Water Research, 2009, 43(6):1711-1719.
[40] GÜNDER B. The membrane-coupled activated sludge process in municipal wastewater treatment[M]. Boca Raton:CRC Press, 2000.
[41] MUELLER J, BOYLE W C, POPEL H J. Aeration:principles and practice[M]. Boca Raton:CRC Press, 2002.
[42] WINGENDER J, NEU T R, FLEMMING H C. What are bacterial extracellular polymeric substances?[M]//Microbial extracellular polymeric substances, Berlin Heidelberg:Springer, 1999:1-19.
[43] WINGENDER J, NEU T R, FLEMMING H C. Microbial extracellular polymeric substances:characterization, structure and function[M]. New York:Springer Science & Business Media, 2012.
[44] KOPP J B. Biomineralization in magnetotactic bacteria[J]. Proteins, 2001, 11:1-11.
[45] HENKEL J, CORNEL P, WAGNER M. Free water content and sludge retention time:impact on oxygen transfer in activated sludge[J]. Environmental Science & Technology, 2009, 43(22):8561-8565.
[46] TREMIER A, GUARDIA A, MASSIANI C, et al. A respirometric method for characterizing the organic composition and biodegradation kinetics and the temperature influence on the biodegradation kinetics, for a mixture of sludge and bulking agent to be co-composted[J]. Bioresource Technology, 2005, 96(2):169-180.
[47] GIORDANO A, STANTE L, PIROZZI F, et al. Sequencing batch reactor performance treating PAH contaminated lagoon sediments[J]. Journal of Hazardous Materials, 2005, 119(1/2/3):159-166.
[48] DESHPANDE R R, HEINZLE E. On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors[J]. Biotechnology Letters, 2004, 26(9):763-767.
[49] HAO X D, WANG Q L, ZHANG X P, et al. Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge[J]. Water Research, 2009, 43(14):3604-3612.
[50] GARCIA O F, GOMEZ E, SANTOS V E, et al. Oxygen uptake rate in microbial processes:an overview[J]. Biochemical Engineering Journal, 2010, 49(3):289-307.
[51] RAUNKJAER K H, VITVED-JACOBSEN T, NIELSEN P. Measurement of pools of protein, carbohydrate and lipid in domestic wastewater[J]. Water Research, 1994, 28(2):251-262.
[52] NOVÁK L, LARREA L, WANNER J. Mathematical model for soluble carbonaceous substrate bio-sorption[J]. Water Science and Technology, 1995, 31(2):67-77.
[53] TAN T W, NG H Y, ONG S L. Effect of mean cell residence time on the performance and microbial diversity of pre-denitrification submerged membrane bioreactors[J]. Chemosphere, 2008, 70(3):387-396.
[54] GOMEZ E, SANTOS V E, ALCON A, et al. Oxygen-uptake and mass-transfer rates on the growth of Pseudomonas putida CECT5279:influence on biodesulfurization (BDS) capability[J]. Energy & Fuels, 2006, 20(4):1565-1571.
[55] GARCJA O F, CASTRO E G, SANTOS V E. Oxygen transfer and uptake rates during xanthan gum production[J]. Enzyme and Microbial Technology, 2000, 27(9):680-690.
[56] LESLIE GRADY JR C P, DAIGGER Glen T, LIM Henry C. 废水生物处理(第2版):改编和扩充[M]. 张锡辉, 刘勇弟, 译. 北京:化学工业出版社, 2003. LESLIE GRADY JR C P, DAIGGER Glen T, LIM Henry C. Biological wastewater treatment (second edition):revised and expanded[M]. ZHANG Xihui, LIU Yongdi, trans. Beijing:Chemical Industry Press, 2003.
[57] SANDFORD D S, GALLO T. Application of deep shaft technology to the treatment of food processing wastewater[J]. Environmental Protection Technology Series, 1978. EPA600/2-78-188.
[58] 温新品. 深井曝气技术发展及探讨[J]. 化学工程与装备, 2011(8):160-162. WEN X P. Development and discussion of deep well aeration technology[J]. Chemical Engineering and Equipment, 2011(8):160-162.
[59] 闫广平. 加压曝气生物氧化法处理乙醛废水的动力学研究[D]. 长春:东北师范大学, 2006. YAN G P. Dynamics research on pressurized aeration biological oxidation process for treating acetaldehyde wastewater[D]. Changchun:Northeast Normal University, 2006.
[60] 陈立波, 李风亭. 压力曝气生物反应器处理废水的研究[J]. 同济大学学报(自然科学版), 2007(9):1219-1224. CHEN L B, LI F T. Study of wastewater treatment by pressurized aeration bio-reactor[J]. Journal of Tongji University (Nature Science), 2007(9):1219-1224.
[61] 张诗华, 郑俊, 王健. 加压固定床生物膜反应器降解污水中有机物的研究[J]. 中国给水排水, 2009(11):47-50. ZHANG S H, ZHENG J, WANG J. Degradation of organic compounds in wastewater in pressurized fixed bed biofilm reactor[J]. China Water & Wastewater, 2009(11):47-50.
[62] ASHLEY K I, MAVINIC D S, HALL K J. Bench-scale study of oxygen transfer in coarse bubble diffused aeration[J]. Water Research, 1992, 26(10):1289-1295.
[63] HASEGAWA H, NAGASAKA Y, KATAOKA H. Electrical potential of microbubble generated by shear flow in pipe with slits[J]. The 1st international colloquium on dynamics, physics and chemistry of bubbles and gas-liquid boundaries, 2008, 40(7/8):554-564.
[64] CHU L B, XING X H, YU A F, et al. Enhanced ozone of simulated dyestuff wastewater by microbubbles[J]. Chemosphere, 2007, 68(10):1854-1860.
[65] CHOI Y J, PARK J Y, KIM Y J, et al. Flow characteristics of microbubble suspensions in porous media as an oxygen carrier[Z]. Verlag, 2008(36):59-65.
[66] XU Q Y, NAKAJIMA M, ICHIKAWA S, et al. A comparative study of microbubble generation by mechanical agitation and sonication[J]. Innovative Food Science & Emerging Technologies, 2008, 9(4):489-494.
[67] 刘坤, 高廷耀. 关于微孔曝气系统性能及其设计的探讨[J]. 净水技术, 2002(4):5-8. LIU K, GAO T Y. Research on the performance and design fine bubble aeration system[J]. Water Purification Technology, 2002(4):5-8.
[68] 刘春, 张磊, 杨景亮, 等. 微气泡曝气中氧传质特性研究[J]. 环境工程学报, 2010(3):585-589. LIU C, ZHANG L, YANG J L, et al. Characteristics of oxygen transfer in microbubble aeration[J]. Chinese Journal of Environment Engineering, 2010(3):585-589.
[69] CAPELA S, ROUSTAN M, HDUIT A. Transfer number in fine bubble diffused aeration systems[J]. Water Science & Technology, 2001, 43(11):145-152.
[70] DUDLEY J. Mass transfer in bubble columns:a comparison of correlations[J]. Water Research, 1995, 29(4):1129-1138.
[71] GILLOT S, CAPELA S, HEDUIT A. Effect of horizontal flow on oxygen transfer in clean water and in clean water with surfactants[J]. Water Research, 2000, 34(2):678-683.
[72] KULKARNI A, SHAH Y T, KELKAR B G. Gas holdup in bubble column with surface-active agents:a theoretical model[J]. AIChE J. 1987, 33(4):690-693.
[73] 李尔, 曾祥英, 范跃华. 微孔曝气最优气泡群的确定方法[J]. 水处理技术, 2007(7):21-24. LI E, ZENG X Y, FAN Y H. Determination of optimal bubble group in micro-pore[J]. Technology of Water Treatment, 2007(7):21-24.
[74] 郝建昌, 张安龙. 射流曝气技术在工业废水处理中的应用[J]. 化工环保, 2005(6):451-454. HAO J C, ZHANG A L. Jet aeration technology and its application in industrial wastewater treatment[J]. Environment Protection of Chemical Industry, 2005(6):451-454.
[75] 瞿永彬, 俞庭康, 沈燕云. 射流曝气器充氧性能研究[J]. 同济大学学报(自然科学版), 1993(1):129-134. ZHAI Y B, YU T K, SHEN Y Y. Study on the oxygenation performance of the jet aerator[J]. Journal of Tongji University, 1993(1):129-134.
[76] 王全勇, 刘汝鹏, 曲莹, 等. 射流间歇曝气氧化沟工艺处理城市污水[J]. 中国给水排水, 2008(8):59-62. WANG Q Y, LIU R P, QU Y, et al. Application of oxidation ditch with intermittent jet aeration to municipal wastewater treatment[J]. China Water & Wastewater, 2008(8):59-62.
[77] 韦朝海, 谢波, 吴超飞, 等. 三重环流生物流化床的流体力学与传质特性[J]. 化学反应工程与工艺, 1999(2):55-62. WEI C H, XIE B, WU C F, et al. Hydrodynamics and mass transfer of triplet loop biological fluidized bed[J]. Chemical Reaction Engineering and Technology, 1999(2):55-62.
[78] 韦朝海, 李磊, 吴锦华, 等. 漏斗型导流内构件对内循环三相流化床流体力学与传质特性的影响[J]. 化工学报, 2007(3):591-595. WEI C H, LI L, WU J H, et al. Influence of funnel-shape internals on hydrodynamics and mass transfer in internal loop three phase fluidized bed[J]. CIESC Journal, 2007(3):591-595.
[79] PANKHANIA M, STEPHENSON T, SEMMENS M J. Hollow fiber bioreactor for wastewater treatment using bubble less membrane aeration[J]. Water Research, 1994, 28(10):2233-2236.
[80] 韦朝海, 孙寿家, 佘健. 活性炭处理含氰废水机理研究——吸附和催化氧化机理[J]. 华南理工大学学报(自然科学版), 1994(5):1-9. WEI C H, SUN S J, SHE J. A study of mechanism of treating cyanide containing wastewater by activated carbon-the mechanism of adsorption and catalytic oxidation[J]. Journal of South China University of Technology (Natural Science), 1994(5):1-9. |