[1] ZHU L, YIN Y, WANG C F, et al. Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding[J]. J. Mater. Chem. C, 2013, 32(1):4925-4932.
[2] SONG Y, SHI W, CHEN W, et al. Fluorescent carbon nanodots图11 Fe3+浓度对NCDs体系荧光的影响conjugated with folic acid for distinguishing folate-receptor-positive cancer cells from normal cells[J]. J. Mater. Chem., 2012, 22:12568-12573.
[3] SONG Y, ZHU S, YANG B. Bioimaging based on fluorescent carbon dots[J]. RSC Adv., 2014, 4:27184-27200.
[4] GONG X, LU W, PAAU M C, et al. Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging[J]. Anal. Chim. Acta, 2015, 86:74-84.
[5] YANG S, SUN J, LI X, et al. Large-scale fabrication of heavy doped carbon quantum dots with tunable-photoluminescence and sensitive fluorescence detection[J]. J. Mater. Chem. A, 2014, 2:8660-8667.
[6] LI Y, ZHAO Y, CHENG H, et al. Nitrogen-doped graphene quantum dots with oxygenrich functional groups[J]. Am. Chem. Soc., 2012, 134(1):15-18.
[7] JU J, CHEN W. Synthesis of highly fluorescent nitrogendoped graphene quantum dots for sensitive, label-free detection of Fe(Ⅲ) in aqueous media[J]. Biosens. Bioelectron., 2014, 58:219-225.
[8] YANG X, LUO Y, ZHU S, et al. One-pot synthesis of high fluorescent carbon nanoparticles and their applications as probes for detection of tetracyclines[J]. Biosens. Bioelectron., 2014, 56:6-11.
[9] FILIPPATOS G, FARMAKIS D, COLET J C, et al. Intravenous ferric carboxymaltose in iron-deficient chronic heart failure patients with and without anaemia:a subanalysis of the FAIR-HF trial[J]. Eur. J. Heart Fail, 2013, 15:1267-1276.
[10] BRUGNARA C. Iron deficiency and erythropoiesis:new diagnostic approaches[J]. Clin. Chem., 2003, 49(10):1573-1578.
[11] HARDIKAR P S, JOSHI S M, BHAT D S, et al. Spuriously high prevalence of prediabetes diagnosed by HbA1c in young Indians partly explained by hematological factors and iron deficiency anemia[J]. Diabetes Care, 2012, 35(4):797-802.
[12] YIN Z Y, LI Y Y. Potentiometric stripping analysis for indirect determination of iron in blood scrum[J]. Chinese Journal of Analystical Chemistry, 2002, 30:1150.
[13] AJLEC R, STUPAR J A. Determination of iron species in wine by ion-exchange chromatography-flame atomic absorption spectrometry[J]. Analyst, 1989, 114:137-142.
[14] ROY V, AMYOT M, CARIGNAN R. Beaver ponds increase methylmercury concentrations in Canadian shield streams along vegetation and pond-age gradients[J]. Environ. Sci. Technol., 2009, 43:5605-5611.
[15] WANG F X, GU Z Y, LEI W, et al. Graphene quantum dots as a fluorescent sensing platform for highly efficient detection of copper(Ⅱ) ions[J]. Sens. Actuators B, 2014, 190:516-522.
[16] PENG H, TRAVAS-SEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chemistry of Materials, 2009, 21:5563-5565.
[17] SUN Y P, ZHOU B, LIN Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128:7756-7757.
[18] DHAMI S, DE MELLO A J, RUMBLES G, et al. Phthalocyanine fluorescence at high concentration:dimers or reabsorption effect?[J]. Photochem. Photobiol, 1995, 61:341-346.
[19] 高雪, 孙靖, 刘晓, 等. 碳量子点的合成、性质及应用[J]. 化工进展, 2017, 36(5):1734-1742. GAO X, SUN J, LIU X, et al. Carbon quantum dots:synthesis, properties and applications[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1734-1742.
[20] LI F, WANG J, LAI Y M, et al. Ultrasensitive and selective detection of copper (Ⅱ) and mercury (Ⅱ) ions by dye-coded silver nanoparticlebased SERS probes[J]. Biosens. Bioelectron., 2013, 39(1):82-87.
[21] ZHOU M, ZHOU Z L, GONG A H, et al. Synthesis of highly photoluminescent carbon dots via citric acid and Tris for iron(Ⅲ) ions sensors and bioimaging[J]. Talanta, 2015, 143:107-113.
[22] CHANDRA S, LAHA D, PRAMANIK A, et al. Synthesis of highly fluorescent nitrogen and phosphorus doped carbon dots for the detection of Fe3+ ions in cancer cells[J]. Luminescence, 2016, 31:81-87. |