[1] 舒歌平, 杜淑凤. 中国应加快煤炭直接液化技术产业化步伐[J]. 洁净煤技术, 2000, 6(4):21-24. SHU G P, DU S F. Quicken industrialization step of coal direct liquefaction technology in China[J]. Clean Coal Technonlogy, 2000, 6(4):21-24.
[2] 张玉卓. 神华现代煤制油化工工程建设与运营实践[J]. 煤炭学报, 2011, 36(2):179-184. ZHANG Y Z. Construction and operation of Shenhua's modern coal-to-liquid-and-chemicals demonstration projects[J]. Journal of China Coal Society, 2011, 36(2):179-184.
[3] 张德祥, 刘瑞民, 高晋生. 煤炭直接加氢液化技术开发的几点思考[J]. 石油学报(石油加工), 2011, 27(3):329-335. ZHANG D X, LIU R M, GAO J S. Thoughts about the development of coal direct hydro-liquefaction technology[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2011, 27(3):329-335.
[4] SAITO I. Coal liquefaction technology[J]. Journal of the Japan Institute of Energy, 2008, 87(3):215-222.
[5] 吴秀章, 舒歌平, 李克健, 等.煤炭直接液化工艺与工程[M]. 北京:科学出版社, 2015. WU X Z, SHU G P, LI K J, et al. Technology and engineering of direct coal liquefaction process[M]. Beijing:Science Press, 2015.
[6] 舒歌平, 史士东, 李克健. 煤炭液化技术[M]. 北京:煤炭工业出版社, 2003. SHU G P, SHI S D, LI K J. Coal liquefaction technology[M]. Beijing:China Coal Industry Publishing House, 2003.
[7] 李文华. 东胜——神府煤的煤质特征与转化特性[D]. 北京:煤炭科学研究总院, 2001. LI W H. Characteristics and conversion behavior of Dongsheng-Shenfu coal[D]. Beijing:China Coal Research Institute, 2001.
[8] 李永伦, 高山松, 李克健. 惰质组含量对上湾煤液化性能的影响[J]. 洁净煤技术, 2013, 19(4):50-54. LI Y L, GAO S S, LI K J. Influence of inertinite content on liquefaction performance of Shangwan coal[J]. Clean Coal Technonlogy, 2013, 19(4):50-54.
[9] SHU G P, ZHANG Y Z. Research on the maceral characteristics of Shenhua coal and efficient and directional direct coal liquefaction technology[J]. International Journal of Coal Science and Technology, 2014, 1(1):46-55.
[10] BARRAZA J, COLEY-SILVA E, PIÑERES J. Effect of temperature, solvent/coal ratio and beneficiation on conversion and product distribution from direct coal liquefaction[J]. Fuel, 2016, 172:153-159.
[11] HORST R, MICHAEL A W. Effects of in-situ mineral matter and a nickel——molybdenum catalyst on hydrogenation of Liddell coal[J]. Fuel, 1980, 59(3):175-180.
[12] COCHRAN S J, HATSWELL M, JACKSON W R, et al. Evidence for direct interaction of hydrogen with brown coal in tin-catalyzed reactions[J]. Fuel, 1982, 61(9):831-833.
[13] 刘华. 提高煤直接液化催化剂活性的研究进展及展望[J]. 洁净煤技术, 2016, 22(4):105-111. LIU H. Improvement of catalysts activity for direct coal liquefaction[J]. Clean Coal Technonlogy, 2016, 22(4):105-111.
[14] MCCANDLESS F P, WATERMAN J J, SIRE D L. Coal hydrogenation and hydrocracking using a metal chloride-gaseous hydrochloric acid catalyst system[J]. Industrial & Engineering Chemistry Process Design and Development, 1981, 20(1):91-94.
[15] WELLER S, PELIPETZ M G, FRIEDMAN S, et al. Coal hydrogenation catalysts batch autoclave tests[J]. Industrial & Engineering Chemistry, 2002, 42(2):330-334.
[16] 王知彩, 水恒福, 古绪鹏, 等. SO42-/ZrO2固体酸催化神华煤直接液化反应性研究[J]. 燃料化学学报, 2010, 38(3):257-263. WANG Z C, SHUI H F, GU X P, et al. Study on the direct liquefaction reactivity of Shenhua coal catalyzed by SO42-/ZrO2 solid acid[J]. Journal of Fuel Chemistry and Technology, 2010, 38(3):257-263.
[17] SAKANISHI K, HASUO H, MASAHIRO K A, et al. Catalytic activity of NiMo sulfide supported on a particular carbon black of hollow microsphere in the liquefaction of a subbituminous coal[J]. Energy & Fuels, 1996, 10(1):216-219.
[18] UNGGUL P, KINYA S, OSAMU O, et al. Catalytic activity of FeMoNi ternary sulfide supported on a nanoparticulate carbon in the liquefaction of Indonesian coals[J]. Industrial & Engineering Chemistry Research, 2001, 40(3):774-780.
[19] 王村彦, 黄慕杰, 吴春来. 煤直接液化催化剂的研究与开发动向[J]. 煤炭科学技术, 1998(4):25-26. WANG C Y, HUANG M J, WU C L. Research and development of direct coal liquefaction catalyst[J]. Coal Science and Technology, 1998(4):25-26.
[20] HIRANO K, KOUZU M, OKADA T, et al. Catalytic activity of iron compounds for coal liquefaction[J]. Fuel, 1999, 78(15):1867-1873.
[21] 小山徹, 田沢和治, 兼子隆雄, 等. 褐炭液化反応の研究(19):鉄触媒物性の液化反応活性への影響[J]. 石炭科学会議発表論文集, 1993(30):201-204.
[22] BACAUD R, BESSON M, DJEGA-MARIADASSOU G. Development of a new iron catalyst for the direct liquefaction of coal[J]. Energy & Fuels, 1994, 8(1):3-9.
[23] KANEKO T, TAZAWA K, OKUYAMA N, et al. Effect of highly dispersed iron catalyst on direct liquefaction of coal[J]. Fuel, 2000, 79(3):263-271.
[24] 朱晓苏, 李茹英, 郑建国,等. 高分散度固体酸催化剂的液化试验研究[J]. 煤炭转化, 2001, 24(3):51-61. ZHU X S, LI R Y, ZHENG J G, et al. The coal liquefaction research of highly dispersed solid acid catalysts[J]. Coal Conversion, 2001, 24(3):51-61.
[25] LI Y, MA F, SU X, et al. Synthesis and catalysis of oleic acid-coated Fe3O4 nanocrystals for direct coal liquefaction[J]. Catalysis Communications, 2012, 26(35):231-234.
[26] ZHANG L, YANG J, ZHU J, et al. Properties and liquefaction activities of ferrous sulfate based catalyst impregnated on two Chinese bituminous coals[J]. Fuel, 2002, 81(7):951-958.
[27] 薛永兵, 凌开成, 邹纲明. 煤直接液化中溶剂的作用和种类[J]. 煤炭转化, 1999, 22(4):l-4. XUE Y B, LING K C, ZHOU G M. Functions and kinds of solvents in coal direact liquefaction[J]. Coal Conversion, 1999, 22(4):l-4.
[28] SKOWRONSKI1 R, RATTO J, GOLDBERG I, et al. Hydrogen incorporation during coal liquefaction[J]. Fuel, 1984, 63:440-448.
[29] WHITEHURST M, MITCHELL D, FARCASIU T. Coal liquefaction-The chemistry and technology of thermal processes[M]. New York:Academic Press, 1980.
[30] SKOWRONSKI1 R, RATTO J, GOLDBERG I, et al. Hydrogen incorporation during coal liquefaction[J]. Fuel, 1984, 63(4):440-448.
[31] OUCHI K, MAKABE M. Hydrogen transfer in the hydrogenation of model compounds[J]. Fuel, 1988, 67(11):1536-1541.
[32] 薛永兵, 凌开成. 溶剂对煤液化影响的研究[J]. 燃料化学学报, 2012, 40(11):1295-1299. XUE Y B, LING K C. Effect of solvent on direct coal liquefaction[J]. Journal of Fuel Chemistry and Technology, 2012, 40(11):1295-1299.
[33] 高山松, 张德祥, 李克健, 等. 神华煤直接液化循环溶剂的催化加氢[J]. 石油学报(石油加工), 2014, 30(4):644-649. GAO S S, ZHANG D X, LI K J, et al. Catalytic hydrotreating of recycle solvent for Shenhua coal liquefaction[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2014, 30(4):644-649.
[34] JIN L, HAN K, WANG J, et al. Direct liquefaction behaviors of Bulianta coal and its macerals[J]. Fuel Processing Technology, 2014, 128:232-237.
[35] GODO M, SAITO M, ISHIHARA A. Elucidation of coal 1iquefaction mechanisms using a tritium tracer method:hydrogen exchange reaction of solvents with tritiated molecular hydrogen in the presence and absence of H2S[J]. Fuel, 1998, 77(10):947-952.
[36] HULSTON C K, REDLICH P J, JACKSON W R, et al. Effect of added transition metals and two-stage heating on reactions of sodium-aluminate-treated coals in water with CO, H2 and CO-H2 mixtures[J]. Fuel, 1997, 76(3):247-256.
[37] CAI J, WANG Y, HUANG Q, et al. Rapid liquefaction of Longkou lignite coal by using a tubular reactor under methane atmosphere[J]. Fuel, 2008, 87(15):3388-3392.
[38] LIU Z, SHI S, LI Y. Coal liquefaction technologies-Development in China and challenges in chemical reaction engineering[J]. Chemical Engineering Science, 2009, 65(1):12-17.
[39] 刘振宇. 煤直接液化技术发展的化学脉络及化学工程挑战[J]. 化工进展, 2010, 29(2):193-197. LIU Z Y. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology[J]. Chemical Industry and Engineering Progress, 2010, 29(2):193-197.
[40] GUIN J, TARRER A, TAYLOR Z, et al. Photomicrographic study of coal dissolution[J]. ACS Div. Fuel Chemistry (Preprint), 1975, 20:66-78.
[41] 艾军. 工艺因素对神东煤直接液化性能的影响[J]. 煤炭转化, 2011, 34(2):51-54. AI J. Effect of technology on the direct liquefaction performance of Shendong coal[J]. Coal Conversion, 2011, 34(2):51-54.
[42] 李刚, 凌开成. 煤高温快速液化影响因素的研究[J]. 燃料化学学报, 2009, 37(6):648-653. LI G, LING K C. Influencing factors on quick coal liquefaction at high temperature[J]. Journal of Fuel Chemistry and Technology, 2009, 37(6):648-653.
[43] 舒歌平. 神华煤直接液化工艺开发历程及其意义[J]. 神华科技, 2009, 7(1):78-82. SHU G P. Development history and its significance of Shenhua coal direct liquefaction[J]. Shenhua Science and Technology, 2009, 7(1):78-82.
[44] 杜海胜, 安亮, 韩来喜, 等. 影响神华煤直接液化性能的因素及分析[J]. 煤炭转化, 2012, 35(3):33-37. DU H S, AN L, HAN L X, et al. Analysis of the factors in affecting the performance of Shenhua direct coal liquefaction[J]. Coal Conversion, 2012, 35(3):33-37. |