[1] NGUYEN T T, YOO H R, RHO Y W, et al. Speed control of pig using bypass flow in natural gas pipeline[C]//IEEE International Symposium on Industrial Electronics, 2001. Proceedings ISIE IEEE, 2001:863-868.
[2] NGUYEN T T, KIM S B, YOO H R, et al. Modeling and simulation for pig with bypass flow control in natural gas pipeline[J]. KSME International Journal, 2001, 15(9):1302-1310.
[3] MIRSHAMSI M, RAFEEYAN M. Speed control of pipeline pig using the QFT method[J]. Oil &Gas Science and Technology, 2012, 67(4):693-701.
[4] MONEY N, COCKFIELD D, MAYO S, et al. Dynamic speed control in high velocity pipelines[J]. PPSA Pipelines & Gas Journal, 2012, 239(8):30-38
[5] ZHU X X, ZHANG S M, TAN G B, et al. Experimental study on dynamics of rotatable bypass-valve in speed control pig in gas pipeline[J]. Measurement, 2014, 47(1):686-692.
[6] WU H L, VAN SPRONSEN G. Slug reduction with high by-pass pigs-a mature technology[C]//12th International Conference on Multiphase Production Technology. BHR Group, 2005:313-325.
[7] GROOTE G A, VAN DE CAMP P B J, VEENSTRA P, et al. By-pass pigging without or with speed control for gas-condensate pipelines[C]//Abu Dhabi International Petroleum Exhibition and Conference. Society of Petroleum Engineers, 2015:1-13.
[8] OLANIYAN Y, LARREY D. Bypass pig modeling-a three phase gas condensate pipeline field case[C]//9th North American Conference on Multiphase Technology. BHR Group, 2014:499-512.
[9] VAN SPRONSEN G, ENTABAN A, MOHAMAD AMIN K, et al. Field experience with by-pass pigging to mitigate liquid surge[C]//16th International Conference on Multiphase Production Technology. BHR Group, 2013:299-308.
[10] O'DONOGHUE A. Pigging as a flow assurance solution:estimating pigging frequency for dewaxing[J]. Pipeline World, 2004, 49(2):13-17.
[11] GALTA T. Bypass pigging of subsea pipelines suffering wax deposition[D]. Trondheim:Norwegian University of Science and Technology, 2014.
[12] ADIYODI KENOTH S, AL MATAR A, GUPTA D K. Effectiveness of bypass-pigging solutions in multiphase-flow pipelines with waxy crude oil:evaluation and innovative solution[J]. Oil and Gas Facilities, 2015, 4(06):51-65.
[13] DEN HEIJER A. Frictional behaviour of pigs in motion[D]. Delft:Delft University of Technology, 2016.
[14] KIM D K, CHO S H, PARK S S, et al. Verification of the theoretical model for analyzing dynamic behavior of the pig from actual pigging[J]. Journal of Mechanical Science and Technology, 2003, 17(9):1349-1357.
[15] NIECKELE A O, BRAGA A M B, AZEVEDO L F A. Transient pig motion through gas and liquid pipelines[J]. Energy Resources Technology, 2001, 123(12):1513-1519.
[16] TOLMASQUIM S T, NIECKELE A O. Design and control of pig operations through pipelines[J]. Journal of Petroleum Science and Engineering, 2008, 62(3):102-110.
[17] BOTROS K K, GOLSHAN H. Field validation of a dynamic model for an MFL ILI tool in gas pipelines[C]//8th International Pipeline Conference. American Society of Mechanical Engineers, 2010:325-336.
[18] DURALI M, FAZELI A, NABI A. Investigation of dynamics and vibration of PIG in oil and gas pipelines[C]//ASME 2007 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2007:2015-2024.
[19] ESMAEILZADEH F, MOWLA D, ASEMANI M. Mathematical modeling and simulation of pigging operation in gas and liquid pipelines[J]. Journal of Petroleum Science and Engineering, 2009, 69(1):100-106.
[20] HOSSEINALIPOUR S M, KHALILI A Z, SALIMI A. Numerical simulation of pig motion through gas pipelines[C]//16th Australian Fluid Mechanics Conference. Australia:Gold Coast. 2007:971-975.
[21] SINGH A, HENKES R. CFD modeling of the flow around a by-pass pig[C]//8th North American Conference on Multiphase Technology. BHR Group, 2012:229-243.
[22] AZPIROZ J E, HENDRIX M H W, BREUGEM W P, et al. CFD modelling of bypass pigs with a deflector disk[C]//17th International Conference on Multiphase Production Technology. BHR Group, 2015:141-155.
[23] LIANG Xiaoyun. Numerical study of flow around bypass pigs[D]. Delft:Delft University of Technology, 2015.
[24] LIANG Z, HE H G, CAI W L. Speed simulation of bypass hole PIG with a brake unit in liquid pipe[J]. Journal of Natural Gas Science and Engineering, 2017, 42:40-47.
[25] HENDRIX M H W, LIANG X, BREUGEM W P, et al. Characterization of the pressure loss coefficient using a building block approach with application to by-pass pigs[J]. Journal of Petroleum Science and Engineering, 2017, 150:13-21.
[26] MASSEY B S. Mechanics of fluids[M]. 9th ed. Oxford:Spon Press, 2012.
[27] RAHE F. Optimizing the active speed control unit for in-line inspection tools in gas[C]//2006 International Pipeline Conference. American Society of Mechanical Engineers, 2006:377-383.
[28] IDELCHIK I E. Handbook of hydraulic resistance[M]. 4th ed. Connecticut:Begell House, 2007.
[29] CHURCHILL S W. Friction-factor equation spans all fluid-flow regimes[J]. Chemical Engineering, 1977, 84(24):91-92.
[30] TEYSSANDIER R G, WILSON M P. An analysis of flow through sudden enlargements in pipes[J]. Journal of Fluid Mechanics, 1974, 64(1):85-95.
[31] NIECKELE A O, BRAGA A M B, AZEVEDO L F A. Transient pig motion through gas and liquid pipelines[J]. Energy Resources Technology, 2001, 123(12):1513-1519.
[32] O'DONOGHUE A F. On the steady state motion of conventional pipeline pigs using incompressible drive media[D]. Cranfield, Bedfordshire:Cranfield University, 1996.
[33] HENDRIX M H W, DEN HEIJER A, BREUGEM W P, et al. Frictional forces during pigging of multiphase pipelines[C]//10th North American Conference on Multiphase Technology.BHR Group, 2016.
[34] ZHU X X, ZHANG S M, LI X L, et al. Numerical simulation of contact force on bi-directional pig in gas pipeline:at the early stage of pigging[J]. Journal of Natural Gas Science and Engineering, 2015, 23:127-138.
[35] ZHU X X, WANG D G, YEUNG H, et al. Comparison of linear and nonlinear simulations of bidirectional pig contact forces in gas pipelines[J]. Journal of Natural Gas Science and Engineering, 2015, 27:151-157.
[36] ZHANG H, ZHANG S M, LIN L, et al. Mechanical characteristics analysis of pig's sealing disc in offshore pipeline[C]//The Twenty-fifth International Offshore and Polar Engineering Conference. USA:International Society of Offshore and Polar Engineers, 2015:14-19.
[37] ZHU X X, WANG W, ZHANG S M, et al. Experimental research on the frictional resistance of fluid-driven pipeline robot with small size in gas pipeline[J]. Tribology Letters, 2017, 65(2):49.
[38] ZHANG H, SANCHEZ C, LIU S H, et al. Wear of a polyurethane rubber used in dry gas pipeline as inspection gauges[J]. Journal of Natural Gas Science and Engineering, 2017, 41:40-48.
[39] ZHANG H, ZHANG S M, LIU S H, et al. Measurement and analysis of friction and dynamic characteristics of PIG's sealing disc passing through girth weld in oil and gas pipeline[J]. Measurement, 2015, 64:112-122.
[40] IJSSELDIJK H P. By-pass pigging experiments and simulation[D]. Delft:Delft University of Technology, 2016.
[41] DONOGHUE O. Pigging as a flow assurance solution avoiding slug catcher overflow[C]//The Pigging Products and Services Association Seminar. UK, 2012.
[42] PARK S, KIM M, NYDAL O J, et al. Mitigation of pig-induced slugs by combination of by-pass pig and inlet separator dual control valves[C]//Offshore Technology Conference Asia. Malaysia:Offshore Technology Conference, 2016:1-15
[43] LEE H S, AGUSTIAWAN D, JATI K I K, et al. Bypass pigging operation experience and flow assurance study[C]//Offshore Technology Conference. USA, 2012:1-10.
[44] ENTABAN A, ISMAIL A, JAMBARI M, et al. By-pass pigging-a ‘simple’ technology with significant business impact[C]//International Petroleum Technology Conference, China. 2013:1-6.
[45] 张占平,李战平,张金箭,等.旁通清管技术在长北项目的应用[J].石油和化工设备, 2013, 16(11):37-41. ZHANG Z P, LI Z P, ZHANG J J, et al. The application of bypass pigging in Changbei project[J]. Petro & Chemical Equipment, 2013, 16(11):37-41.
[46] 王惠,谢艳梅,曾萍.苏里格气田旁通清管技术研究及应用[J].石油化工应用, 2014, 33(11):29-31. WANG H, XIE Y M, ZENG P. The research and application of bypass pigging technology in Sulige gas field[J]. Petrochemical Industry Application, 2014, 33(11):29-31.
[47] 姚海元,罗小明,李清平,等. 一种防卡堵喷气式射流清管器; 201320602776.1[P]. 2013-09-27. YAO H Y, LUO X M, LI Q P, et al. An anti-block jet bypass pig:201320602776.1[P]. 2013-09-27.
[48] WU H L, MOL E B, STARSMORE R P, et al. By-pass pigs for liquid management in a two-phase flow pipeline[C]//BHR Group Conference Series Publication. UK:Professional Engineering Publishing; 1999, 35:361-372.
[49] O'DONOGHUE A. Why pigs get stuck and how to avoid it[J]. Pipes & Pipelines International, 2003, 48(2):5-16.
[50] 蒲红宇,刘仕鳌,蒋洪.天然气管道清管作业风险分析及应对措施[J].油气储运, 2012, 31(6):461-462. PU H Y, LIU S A, JIANG H. Risk analysis and countermeasures of natural gas pigging operation[J]. Oil & Gas Storage and Transportation, 2012, 31(6):461-462.
[51] 张道锋. 天然气管道清管作业风险预控[J]. 化学工程与装备, 2016(7):253-254. ZHANG D F. Risk pre-control of natural gas pigging operation[J]. Chemical Engineering & Equipment, 2016(7):253-254.
[52] 高超,王皓,郭东升.海底天然气管道清管风险分析及应对[J].天然气与石油, 2016, 34(5):6-10. GAO C, WANG H, GUO D S. Risk analysis and countermeasures of subsea natural gas pigging[J]. Natural Gas and Oil, 2016, 34(5):6-10.
[53] 丁麟,史博会,吕晓方,等.天然气水合物的生成对浆液流动稳定性影响综述[J].化工进展, 2016, 35(10):3118-3128. DING L, SHI B H, LU X F, et al. Investigation on the effects of natural gas hydrate formation on slurry flow stability[J]. Chemical Industry and Engineering Progress, 2016, 35(10):3118-3128.
[54] 孙志高,樊栓狮,郭开华,等.气体水合物——储运天然气技术与发展[J].化工进展, 2001, 20(1):9-12. SUN Z G, FAN S S, GUO K H, et al. Trend of natural gas storage and transport using hydrates[J]. Chemical Industry and Engineering Progress, 2001, 20(1):9-12.
[55] 吕秋楠,陈朝阳,李小森.气体水合物快速生成强化技术与方法研究进展[J].化工进展, 2011, 30(1):74-79. LU Q N, CHEN Z Y, LI X S. Advances in technology and method for promoting gas hydrate rapid formation[J]. Chemical Industry and Engineering Progress, 2011, 30(1):74-79.
[56] 陈光进,马庆兰,郭天民.气体水合物生成机理和热力学模型的建立[J].化工学报, 2000, 51(5):626-631. CHEN G J, MA Q L, GUO T M. A new mechanism for hydrate formation and development of thermodynamic model[J]. Journal of Chemical Industry and Engineering(China), 2000, 51(5):626-631.
[57] CHANG Y S, WNE Z L, XIN Y, et al. Progress in research of gas hydrate[J]. Chinese Journal of Chemical Engineering, 2011, 19(1):151-162.
[58] 丁麟,史博会,吕晓方,等.天然气水合物形成与生长影响因素综述[J].化工进展, 2016, 35(1):57-64. DING L, SHI B H, LU X F, et al. Review of influence factors of natural gas hydrate formation and growth[J]. Chemical Industry and Engineering Progress, 2016, 35(1):57-64.
[59] 王立满,王玉柱,张海龙.射流清管器清管过程中水合物生成及预防研究[J].清洗世界, 2015, 31(1):14-20. WANG L M, WANG Y Z, ZHANG H L. The numerical simulation on generation and inhibition of natural gas hydrate in by-pass pigging[J]. Cleaning World, 2015, 31(1):14-20.
[60] 樊栓狮,王燕鸿,郎雪梅.天然气水合物动力学抑制技术研究进展[J].天然气工业, 2011, 31(12):99-109. FAN S S, WANG Y H, LANG X M. Progress in the research of kinetic hydrate inhibitors[J]. Natural Gas Industry, 2011, 31(12):99-109.
[61] 胡耀强,何飞,刘婷婷,等.动力学型天然气水合物抑制剂研究进展[J].现代化工, 2015, 35(3):59-61. HU Y Q,HE F,LIU T T,et al.Progress of kinetic inhibitor for natural gas hydrate[J]. Modern Chemical Industry, 2015, 35(3):59-61.
[62] 田旺和,任帅,王东,等.兰成渝成品油管线清管及内检测方案设计[J].管道技术与设备, 2014(4):41-43. TIAN W H, REN S, WANG D, et al. Design of the pigging and internal inspection product oil of the Lanzhou-ChengduChongqing[J]. Pipeline Technique and Equipment, 2014(4):41-43.
[63] 杨理践,赵洋,高松巍. 输气管道内检测器压力-速度模型及速度调整策略[J]. 仪器仪表学报, 2012, 33(11):2407-2413. YANG L J, ZHAO Y, GAO S W. Pressure-velocity model and speed adjustment strategy for in-pipe detector in gas pipeline[J]. Chinese Journal of Scientific Instrument, 2012, 33(11):2407-2413. |