[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
[2] LUKOWIAK Anna,KEDZIORA Anna,STREK Wieslaw. Antimicrobial graphene family materials:progress,advances,hopes and fears[J]. Advances in Colloid and Interface Science,2016,236:101-112.
[3] TODA Kei,FURUE Ryo,HAYAMI Shinya. Recent progress in applications of graphene oxide for gas sensing:a review[J]. Analytica Chimica Acta,2015,878:43-53.
[4] TJONG Sie Chin. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets[J]. Materials Science and Engineering:R:Reports,2013,74(10):281-350.
[5] DAUD Muhammad,KAMAL Muhammad Shahzad,SHEHZAD Farrukh,et al. Graphene/layered double hydroxides nanocomposites:a review of recent progress in synthesis and applications[J]. Carbon,2016,104:241-252.
[6] GENG J,KUAI L,KAN E,et al. Precious-metal-free Co-Fe-O/rGO synergetic electrocatalysts for oxygen evolution reaction by a facile hydrothermal route[J]. ChemSusChem,2015,8:659-664.
[7] QU Z G,LI W Q,TAO W Q. Numerical model of the passive thermal management system for high-power lithium-ion battery by using porous metal foam saturated with phase change material[J]. International Journal of Hydrogen Energy,2014,39:3904 -3913.
[8] WANG Zichen,ZHANG Zhuqian,JIA Li,et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering,2015,78:428-436.
[9] SONG Qingwen,LI Yi,XING Jianwei. Thermal stability of composite phase change material microcapsules incorporated with silver nano-particles[J]. Polymer,2007,48:3317-3323.
[10] OWOLABI Afolabi L,AL-KAYIEM Hussain H,BAHETA Aklilu T,et al. Nanoadditives induced enhancement of the thermal properties of paraffin-based nanocomposites for thermal energy storage[J]. Solar Energy,2016,135:644-653.
[11] ALI M,EL-LEATHY A M,AL-SOFYANY Z. The effect of nanofluid concentration on the cooling system of vehicles radiator[J]. Adv. Mech. Eng.,2014,6:1-13.
[12] NIEH H M,TENG T P,YU C C. Enhanced heat dissipation of a radiator using oxide nano-coolant[J]. Int. J. Therm. Sci,2014,77:252-261.
[13] HERIS S Z,SHOKRGOZAR M,POORPHARHANG S,et al. Experimental study of heat transfer of a car radiator with CuO/ethylene glycol-water as a coolant[J]. J. Dispers. Sci. Technol.,2014,35:677-684.
[14] TENG T P,CHENG C M,CHENG C P. Performance assessment of heat storage by phase change materials containing MWCNTs and graphite[J]. Applied Thermal Engineering,2013,50:637-644.
[15] BALANDIN A A,GHOSH S,BAO W,et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907.
[16] 谢超. 石墨烯增强相变材料导热性能的研究[D]. 南京:东南大学,2015. XIE C. The study on grapheme enhanced thermal conductivity of phase change materials[D]. Nanjing:Southeast University,2015.
[17] HARISH Sivasankaran,OREJON Daniel,TAKATA Yasuyuki,et al. Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J]. Applied Thermal Engineering,2015,80:205-211.
[18] FAN Li Wu,FANG Xin,WANG Xiao,et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy,2013,110:163-172.
[19] FANG X,FAN L W,DING Q,et al. Increased thermal conductivity of eicosane-based composite phase change materials in the presence of grapheme nanoplatelets[J]. Energy Fuels,2013,27:4041-4047.
[20] LI Hairong,JIANG Ming,LI Qi,et al. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance[J]. Energy Conversion and Management,2013,75:482-487.
[21] ZHONG Yajuan,ZHOU Mi,HUANG Fuqiang,et al. Effect of graphene aerogel on thermal behavior of phase change materials for thermal management[J]. Solar Energy Materials & Solar Cells,2013,113:195-200.
[22] SHI Jianan,GER Mingder,LIU Yihming,et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon,2013,51:365-372.
[23] YANG Jie,QI Guoqiang,LIU Yang,et al. Hybrid graphene aerogels/phase change material composites:thermal conductivity,shape-stabilization and light-to-thermal energy storage[J]. Carbon,2016,100:693-702.
[24] QI Guoqiang,YANG Jie,BAO Ruiying,et al. Enhanced comprehensive performance of polyethylene glycol based phase change materialwith hybrid graphene nanomaterials for thermal energy storage[J]. Carbon,2015,88:196-205.
[25] WARZOHA Ronald J,FLEISCHER Amy S. Improved heat recovery from paraffin-based phase change materials due to the presence of percolating graphene networks[J]. International Journal of Heat and Mass Transfer,2014,79:314-323.
[26] MEHRALI Mohammad,LATIBARI Sara Tahan,MEHRALI Mehdi,et al. Preparation and characterization of palmitic acid/grapheme nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material[J]. Applied Thermal Engineering,2013,61(2):633-640.
[27] 丁晴,方昕,范利武,等. 不同二维纳米填料对复合相变材料热导率的影响[J]. 储能科学与技术,2014,3(3):250-254 DING Q,FANG X,FAN L W,et al. Influence of 2-D nanofillers on the thermal conductivity of composite PCMs[J]. Energy Storage Science and Technology,2014,3(3):250-254.
[28] 胡娃萍. 高传热性有机相变材料的制备与性能研究[D].武汉:武汉理工大学,2012. HU W P. Studies on systhesis and properties of high thermal conductivity organic phase change materials[D]. Wuhan:Wuhan University of Technology,2012.
[29] 丁晴. 石墨填料的形态和面向尺寸对复合相变材料传热特性影响的实验研究[D]. 杭州:浙江大学,2015. DING Q. An experimental investigation of the effects of graphite with various shapes and sizes on the heat transfer of composite phase change materials[D]. Hangzhou:Zhejiang University,2015.
[30] MEHRALI Mohammad,LATIBARI Sara Tahan,MEHRALI Mehdi,et al. Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials[J]. Energy,2013,58:628-634.
[31] YUAN Yanping,ZHANG Nan,LI Tianyu,et al. Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage:a comparative study[J]. Energy,2016,97:488-497.
[32] 丁晴,方昕,闫晨,等. 石墨纳米片尺寸对复合相变材料储热特性的影响[J]. 化工学报,2015,66(6):2024-2029. DING Q,FANG X,YAN C,et al. Effects of graphite nanosheet size on thermal storage property of composite PCMs[J]. CIESC Journal,2015,66(6):2024-2029.
[33] WARZOHA Ronald J,FLEISCHER Amy S. Improved heat recovery from paraffin-based phase change materials dueto the presence of percolating graphene networks[J]. International Journal of Heat and Mass Transfer,2014,79:314-323.
[34] FANG Xin,DING Qing,LI Liyi,et al. Tunable thermal conduction character of graphite-nanosheets-enhanced composite phase change materials via cooling rate control[J]. Energy Conversion and Management,2015,103:251-258.
[35] LI Tingxian,LEE Juhyuk,WANG Ruzhu,et al. Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J]. International Journal of Heat and Mass Transfer,2014,75:1-11.
[36] FAN Liwu,FANG Xin,WANG Xiao,et al. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials[J]. Applied Energy,2013,110:163-172.
[37] TAO Y B,LIN C H,HE Y L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material[J]. Energy Conversion and Management,2015,97:103-110.
[38] LIN J F,LU W,ZENG Y B,et al. Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene[J]. Solar Energy Materials & Solar Cells,2014,28:48-51.
[39] WARZOHA Ronald J,FLEISCHER Amy S. Improved heat recovery from paraffin-based phase change materials dueto the presence of percolating graphene networks[J]. International Journal of Heat and Mass Transfer,2014,79:314-323.
[40] WANG Chongyun,FENG Lili,YANG Huazhe,et al. Graphene oxide stabilized polyethylene glycol for heat storage[J]. Physical Chemistry Chemical Physics,2012,14(38):13233-13238.
[41] QI Guoqiang,LIANG Chenglu,BAO Ruiying,et al. Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide[J]. Solar Energy Materials & Solar Cells,2014,123:171-177.
[42] 张兴祥,李树芹,陈赛,等. 聚二乙二醇十六烷基醚单丙烯酸酯/氧化石墨烯复合定型相变材料的制备及表征[J].天津工业大学学报,2016,35(2):1-5. ZHANG X X,LI S Q,CHEN S,et al. Preparation and characterization of poly(diethylene glycol hexadecyl ether acrylate)/graphene oxide composite shape-stabilized phase change materials[J]. Journal of Tianjin Polytechnic University,2016,35(2):1-5.
[43] LI Benxia,LIU Tongxuan,HU Luyang,et al. Facile preparation and adjustable thermal property of stearic acid-grapheme oxide composite as shape-stabilized phase change material[J]. Chemical Engineering Journal,2013,s215/216(2):819-826.
[44] XIONG Weilai,CHEN Yi,HAO Ming,et al. Facile synthesis of PEG based shape-stabilized phase change materials and their photo-thermal energy conversion[J]. Applied Thermal Engineering,2015,91:630-637.
[45] MEHRALI Mohammad,LATIBARI Sara Tahan,MEHRALI Mehdi,et al. Preparation and characterization of palmitic acid/grapheme nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material[J]. Applied Thermal Engineering,2013,61:633-640.
[46] SILAKHORIA Mahyar,FAUZIA Hadi,MAHMOUDIANA Mohammad R,et al. Preparation and thermal properties of form-stable phase changematerials composed of palmitic acid/polypyrrole/grapheme nanoplatelets[J]. Energy and Buildings,2015,99:189-195.
[47] SHI Jianan,GER Mingder,LIU Yihming,et al. Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives[J]. Carbon,2013,51:365-372.
[48] YE Shibing,ZHANG Qinglong,HU Dingding,et al. Core-shell-like structured graphene aerogel encapsulating paraffin:shape-stable phase change material for thermal energy storage[J]. Journal of Materials Chemistry A,2015,3:4018-4025.
[49] HUANG Xinyu,XIA Wei,ZOU Ruqiang. Nanoconfinement of phase change materials within carbon aerogels:phase transition behaviours and photo-to-thermal energy storage[J]. Journal of Materials Chemistry A,2014,2:19963-19968.
[50] 孙海燕.石墨烯基多功能超轻弹性气凝胶[D]. 杭州:浙江大学,2014. SUN H Y. Multifunctional ultra-flyweight elastic aerogels based on graphene[D]. Hangzhou:Zhejiang University,2014.
[51] 李佳佳,陆艺超,叶光斗,等. 纺丝原液原位合成相变材料微胶囊制备石蜡/PVA储能纤维[J].复合材料学报,2012,29(3):79-83. LI J J,LU Y C,YE G D,et al. In-situ synthesis of energy storage paraffin/PVA fibre with phase change microcapsules in the spinning solution[J]. Acta Materiae Compositae Sinica,2012,29(3):79-83.
[52] 王赫,王建平,王艳,等.加入改性石墨烯的聚甲基丙烯酸甲酯/正十八烷相变材料微胶囊的制备与表征[J]. 化工新型材料,2014,42(1):118-121. WANG H,WANG J P,WANG Y,et al. Preparation and characterization of microcapsules of graphite modified poly(methyl methacrylate)/n-octadecane phase change material[J]. New Chemical Materials,2014,42(1):118-121.
[53] 王建川.氧化石墨烯/密胺树脂相变储热微胶囊的制备及性能研究[D]. 广州:华南理工大学,2015. WANG J C. Preparation and properties of graphene oxide/melamine resin phase change microcapsules[D]. Guangzhou:South China University of Technology,2015.
[54] YUAN Kunjie,WANG Huichun,LIU Jian,et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Materials&Solar Cells,2015,143: 29-37.
[55] DAO Trung Dung,JEONG Han Mo. Novel stearic acid/grapheme core-shell composite microcapsule as a phase change material exhibiting high shape stability and performance[J]. Solar Energy Materials & Solar Cells,2015,137:227-234.
[56] DAO Trung Dung,JEONG Han Mo. A pickering emulsion route to a stearic acid/graphene core-shell composite phase change material[J]. Carbon,2016,99:49-57.
[57] STANKOVICH S,DIKIN D A,DOMMETT G H B,et al. Graphene-based composite materials[J]. Nature,2006,442(7100):282-286.
[58] WANG Wei,WANG Chongyun,WANG Teng,et al. Enhancing the thermal conductivity of n-eicosane/silica phase change materials by reduced graphene oxide[J]. Materials Chemistry and Physics,2014,147:701-706. |