[1] Espinal L,Poster D L,Wong-Ng W,et al. Measurement,standards,and data needs for CO2 capture materials:A critical review[J]. Environ. Sci. Technol.,2013,47(21):11960-11975.[2] Aresta M,Dibenedetto A. Utilisation of CO2 as a chemical feedstock:Opportunities and challenges[J]. Dalton Trans.,2007,36(28):2975-2992.[3] Arcoumanis C,Bae C,Crookes R,et al. The potential of dimethyl ether(DME) as an alternative fuel for compression-ignition engines:A review[J]. Fuel,2008,87(7):1014-1030.[4] Semelsberger T A,Borup R L,Greene H L. Dimethyl ether(DME) as an alternative fuel[J]. J. Power Sources,2006,156(2):497-511.[5] Sun Q-Y,Liu Z-P. Mechanism and kinetics for methanol synthesis from CO2/H2 over Cu and Cu/oxide surfaces:Recent investigations by first-principles-based simulation[J]. Front. Chem. China,2011,6(3):164-172.[6] Glueck S M,Gümüs S,Fabian W M,et al. Biocatalytic carboxylation[J]. Chem. Soc. Rev.,2010,39(1):313-328.[7] Handoko A D,Li K,Tang J. Recent progress in artificial photosynthesis:CO2 photoreduction to valuable chemicals in a heterogeneous system[J]. Curr. Opin. Chem. Eng.,2013,2(2):200-206.[8] Savéant J M. Molecular catalysis of electrochemical reactions. Mechanistic aspects[J]. Chem. Rev.,2008,108(7):2348-2378.[9] Indarto A,Yang D R,Choi J W,et al. Gliding arc plasma processing of CO2 conversion[J]. J. Hazard. Mater.,2007,146(1):309-315.[10] Song C. Global challenges and strategies for control,conversion and utilization of CO2 for sustainable development involving energy,catalysis,adsorption and chemical processing[J]. Catalysis Today,2006,115(1):2-32.[11] Correa A,León T,Martin R. Ni-catalyzed carboxylation of C(sp2)-and C(sp3)-O bonds with CO2[J]. Journal of the American Chemical Society,2013,136(3):1062-1069.[12] 李静,邓廷云,杨林,等. CO2吸附活化及催化加氢制低碳烯烃的研究进展[J]. 化工进展,2013,32(2):340-345.[13] 郭建忠,侯昭胤,高静,等. 不同粒径的Ni/SiO2催化剂上CH4和CO2吸附活化的漫反射傅里叶变换红外光谱研究[J]. 催化学报,2007,28(1):22-26.[14] Liu C,Cundari T R,Wilson A K. CO2 reduction on transition metal (Fe,Co,Ni,and Cu) surfaces:In comparison with homogeneous catalysis[J]. The Journal of Physical Chemistry C,2012,116(9):5681-5688.[15] 曹新原,王玮,马新宾. 乙醇和CO2直接合成碳酸二乙酯的原位红外研究[J]. 化学工业与工程,2009,26(1):44-49.[16] Zhang L,Zhang Y,Chen S. Effect of promoter SiO2,TiO2 or SiO2-TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis from CO2 hydrogenation[J]. Applied Catalysis A:General,2012,415-416:118-123.[17] Wang S,Mao D,Guo X,et al. Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts[J]. Catalysis Communications,2009,10(10):1367-1370.[18] Zhang Q,Zuo Y-Z,Han M-H,et al. Long carbon nanotubes intercrossed Cu/Zn/Al/Zr catalyst for CO/CO2 hydrogenation to methanol/dimethyl ether[J]. Catalysis Today,2010,150(1-2):55-60.[19] Krogman J P,Foxman B M,Thomas C M. Activation of CO2 by a Heterobimetallic Zr/Co Complex[J]. Journal of the American Chemical Society,2011,133(37):14582-14585.[20] Yin S,Swift T,Ge Q. Adsorption and activation of CO2 over the Cu-Co catalyst supported on partially hydroxylated γ-Al2O3[J]. Catalysis Today,2011,165(1):10-18.[21] Drees M,Cokoja M,Kühn F E. Recycling CO2 Computational considerations of the activation of CO2 with homogeneous transition metal catalysts[J]. Chem. Cat.:Chem.,2012,4(11):1703-1712.[22] Ashley A,O'Hare D. FLP-mediated activations and reductions of CO2 and CO[J]. Top Curr. Chem.,2013,344:191-217.[23] Liu R W,Qin Z Z,Ji H B,et al. Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system[J]. Industrial and Engineering Chemistry Research,2013,52(47):16648-16655.[24] Chae S R,Hwang E J,Shin H S. Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor[J]. Bioresource Technology,2006,97(2):322-329.[25] Hiroshi H,Satoshi Y,Masahiro D,et al. Selectivity control of CO2 reduction in an inorganic artificial photosynthesis system[J]. Applied Physics Express,2013,6(9):097102.[26] Glueck S M,Gumus S,Fabian W M F,et al. Biocatalytic carboxylation[J]. Chemical Society Reviews,2010,39(1):313-328.[27] Kumar A,Ergas S,Yuan X,et al. Enhanced CO2 fixation and biofuel production via microalgae:Recent developments and future directions[J]. Trends in Biotechnology,2010,28(7):371-380.[28] Li S,Ma S. CO2-activation for γ-butyrolactones and its application in the total synthesis of (±)-heteroplexisolide E[J]. Chemistry:An Asian Journal,2012,7(10):2411-2418.[29] Beller M,Bornscheuer U T. CO2 fixation through hydrogenation by chemical or enzymatic methods[J]. Angewandte Chemie International Edition,2014,53(18):4527-4528.[30] Habisreutinger S N,Schmidt-Mende L,Stolarczyk J K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors[J]. Angewandte Chemie International Edition,2013,52(29):7372-7408.[31] Benson E E,Kubiak C P,Sathrum A J,et al. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels[J]. Chemical Society Reviews,2009,38(1):89-99.[32] Pham M H,Goujard V,Tatibouet J M,et al. Activation of methane and carbon dioxide in a dielectric-barrier discharge-plasma reactor to produce hydrocarbons-Influence of La2O3/γ-Al2O3 catalyst[J]. Catalysis Today,2011,171(1):67-71.[33] Holzer F,Roland U,Kopinke F-D. Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds:Part 1. Accessibility of the intra-particle volume[J]. Applied Catalysis B:Environmental,2002,38(3):163-181.[34] 代斌,宫为民,张秀玲,等. 等离子体催化二氧化碳转化的研究进展[J]. 化学进展,2002,14(3):225-230.[35] Amouroux J,Cavadias S,Doubla A. Carbon dioxide reduction by non-equilibrium electrocatalysis plasma reactor[J]. IOP Conference Series:Materials Science and Engineering,2011,19:12005-12019.[36] Sezer I. Thermodynamic,performance and emission investigation of a diesel engine running on dimethyl ether and diethyl ether[J]. International Journal of Thermal Sciences,2011,50(8):1594-1603.[37] 靳治良,钱玲,吕功煊. 二氧化碳化学——现状及展望[J]. 化学进展,2010,22(6):1102-1115.[38] Jia G-X,Tan Y-S,Han Y-Z. A comparative study on the thermodynamics of dimethyl ether synthesis from CO hydrogenation and CO2 hydrogenation[J]. Industrial & Engineering Chemistry Research,2006,45(3):1152-1159.[39] Ereña J,Sierra I,Aguayo A T,et al. Kinetic modelling of dimethyl ether synthesis from (H2 + CO2) by considering catalyst deactivation[J]. Chemical Engineering Journal,2011,174(2):660-667.[40] Rahimpour M R,Farniaei M,Abbasi M,et al. Comparative study on simultaneous production of methanol,hydrogen,and DME using a novel integrated thermally double-coupled reactor[J]. Energy & Fuels,2013,27(4):1982-1993.[41] Sosna M K,Sokolinskii Y A,Shovkoplyas N Y,et al. Application of the thermodynamic method to developing the process of producing methanol and dimethyl ether from synthesis gas[J]. Theoretical Foundations of Chemical Engineering,2007,41(6):809-815.[42] Flores J H,Peixoto D P B,Appel L G,et al. The influence of different methanol synthesis catalysts on direct synthesis of DME from syngas[J]. Catalysis Today,2011,172(1):218-225.[43] Sun K,Lu W,Wang M,et al. Low-temperature synthesis of DME from CO2/H2 over Pd-modified CuO-ZnO-Al2O3-ZrO2/HZSM-5 catalysts[J]. Catalysis Communications,2004,5(7):367-370.[44] 别良伟,王华,高文桂,等. 浆态床中CO2加氢直接合成二甲醚的双功能催化剂[J]. 化工进展,2009,28(8):1365-1370.[45] 张跃,李静,严生虎,等. Ce 助剂对 CuO-ZnO-Al2O3/HZSM-5在CO2加氢合成二甲醚中的性能影响[J]. 化工进展,2011,30(3):542-546.[46] Zhao Y-Q,Chen J-X,Zhang J-Y. Effects of ZrO2 on the performance of CuO-ZnO-Al2O3/HZSM-5 catalyst for dimethyl ether synthesis from CO2 hydrogenation[J]. Journal of Natural Gas Chemistry,2007,16(4):389-392.[47] Gao W,Wang H,Wang Y,et al. Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts[J]. Journal of Rare Earths,2013,31(5):470-476.[48] 查飞,李治霖,陈浩斌,等. CuO-ZnO-Al2O3-Cr2O3/改性坡缕石催化二氧化碳加氢合成二甲醚的研究[J]. 应用化工,2009,28(2):185-188.[49] 查飞,马小茹,陈浩斌,等. CuO-ZnO-Al2O3/蒙脱土催化二氧化碳加氢合成二甲醚[J]. 可再生能源,2013,31(3):81-85.[50] Naik S P,Ryu T,Bui V,et al. Synthesis of DME from CO2/H2 gas mixture[J]. Chemical Engineering Journal,2011,167(1):362-368.[51] Tao J L,Jun K W,Lee K W. Co-production of dimethyl ether and methanol from CO2 hydrogenation:Development of a stable hybrid catalyst[J]. Applied Organometallic Chemistry,2001,15(2):105-108.[52] Liu R W,Qin Z Z,Ji H B,et al. Synthesis of dimethyl ether from CO2 and H2 using a Cu-Fe-Zr/HZSM-5 catalyst system[J]. Industrial & Engineering Chemistry Research,2013,52(47):16648-16655.[53] Qi G-X,Fei J-H,Zheng X-M,et al. DME synthesis from carbon dioxide and hydrogen over Cu-Mo/HZSM-5[J]. Catalysis Letters,2001,72(1-2):121-124.[54] 杨海贤,贾立山,方维平,等. Cu-Mn/HZSM-5 合成二甲醚催化活性的研究[J]. 天然气化工,2008,33(1):1-5.[55] 王嵩,毛东森,郭晓明,等. CuO-TiO2-ZrO2/HZSM-5催化CO2加氢制二甲醚[J]. 物理化学学报,2011,27(11):2651-2658.[56] Lim H-W,Park M-J,Kang S-H,et al. Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst:Influence of carbon dioxide during hydrogenation[J]. Industrial & Engineering Chemistry Research,2009,48(23):10448-10455.[57] Leach A R. Molecular Catalysis of Electrochemical Reactions[M]. Pearson Education,2001.[58] Grabow L C,Mavrikakis M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation[J]. ACS Catalysis,2011,1(4):365-384.[59] Cramer C J,Truhlar D G. Density functional theory for transition metals and transition metal chemistry[J]. Physical Chemistry Chemical Physics,2009,11(46):10757-10816.[60] Nørskov J K,Bligaard T,Rossmeisl J,et al. Towards the computational design of solid catalysts[J]. Nature Chemistry,2009,1(1):37-46.[61] Wang W,Wang S-P,Ma X-B,et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews,2011,40(7):3703-3727.[62] Lu W-Z,Teng L-H,Xiao W-D. Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor[J]. Chemical Engineering Science,2004,59(22-23):5455-5464.[63] Yang Y-X,Evans J,Rodriguez J A,et al. Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111),Cu clusters,and Cu/ZnO (000 )[J]. Physical Chemistry Chemical Physics,2010,12(33):9909-9917.[64] 陶旭梅,孙晋良,柳文杰,等. CO2和H2合成甲醇的量子化学模拟[J]. 天然气化工:C1化学与化工,2013,38(3):57-61.[65] 胡建水,王程俊,刘雷,等. 完全液相法催化剂上甲醇脱水合成二甲醚的动力学及DFT研究[J]. 化工学报,2012,63(3):819-825.[66] Shim H M,Lee S J,Yoo Y D,et al. Simulation of DME synthesis from coal syngas by kinetics model[J]. Korean Journal of Chemical Engineering,2009,26(3):641-648.[67] An X,Zuo Y-Z,Zhang Q,et al. Dimethyl ether synthesis from CO2 hydrogenation on a CuO-ZnO-Al2O3-ZrO2/HZSM-5 bifunctional catalyst[J]. Industrial & Engineering Chemistry Research,2008,47(17):6547-6554. |