[1] Wang W,Wang S,Ma X,et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews,2011,40(7):3703-3727.[2] 李静,邓廷云,杨林,等. CO2 吸附活化及催化加氢制低碳烯烃的研究进展[J]. 化工进展,2013,32(2):340-345.[3] Rodemerck U,Holeňa M,Wagner E,et al. Catalyst development for CO2 hydrogenation to fuels[J]. Chem. Cat. Chem.,2013,5(7):1948-1955.[4] Dorner R W,Hardy D R,Williams F W,et al. Heterogeneous catalytic CO2 conversion to value-added hydrocarbons[J]. Energy & Environmental Science,2010,3(7):884-890.[5] Kondratenko E V,Mul G,Baltrusaitis J,et al. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic,photocatalytic and electrocatalytic processes[J]. Energy & Environmental Science,2013,6(11):3112-3135.[6] Centi G,Quadrelli E A,Perathoner S. Catalysis for CO2 conversion:A key technology for rapid introduction of renewable energy in the value chain of chemical industries[J]. Energy & Environmental Science,2013,6(6):1711-1731.[7] 许文娟,马丽萍,黄彬,等. CO2 催化加氢研究进展[J]. 化工进展,2009,28(s1):284-289.[8] Saeidi S,Amin N A S,Rahimpour M R. Hydrogenation of CO2 to value-added products——A review and potential future developments[J]. Journal of CO2 Utilization,2014,5:66-81.[9] Dorner R W,Hardy D R,Williams F W,et al. C2-C5+ olefin production from CO2 hydrogenation using ceria modified Fe/Mn/K catalysts[J]. Catalysis Communications,2011,15(1):88-92.[10] Dorner R W,Willauer H D,Hardy D R,et al. Effects of loading and doping on iron-based CO2 hydrogenation catalysts[R]. NRL/MR/6180-09-9200. Washington,D C:Naval Research Laboratory. 2009.[11] Willauer H D,Hardy D R,Schultz K R,et al. The feasibility and current estimated capital costs of producing jet fuel at sea using carbon dioxide and hydrogen[J]. Journal of Renewable and Sustainable Energy,2012,4(3):033111.[12] Drab D M,Willauer H D,Olsen M T,et al. Hydrocarbon synthesis from carbon dioxide and hydrogen:A two-step process[J]. Energy & Fuels,2013,27(11):6348-6354.[13] 刘业奎,王黎,侯栋,等.二氧化碳加氢合成低碳烯烃反应平衡体系热力学研究[J]. 催化学报,2004,25(3):210-218.[14] Torrente-Murciano L,Mattia D,Jones M D,et al. Formation of hydrocarbons via CO2 hydrogenation——A thermodynamic study[J]. Journal of CO2 Utilization,2014,6:34-39.[15] 徐龙伢,王清遐,梁东白,等. CO2加氢制低碳烯烃的Fe/Silicalite-2催化剂研究[J]. 天然气化工,1995,20(5):6-10.[16] Wang J J,You Z,Zhang Q,et al. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J]. Catalysis Today,2013,215:186-193.[17] Hu B,Frueh S,Garces H F,et al. Selective hydrogenation of CO2 and CO to useful light olefins over octahedral molecular sieve manganese oxide supported iron catalysts[J]. Applied Catalysis B:Environmental,2013,132-133:54-61.[18] Gupta N M,Kamble V S,Iyer R M. Effect of γ-irradiation on methanation of carbon dioxide over supported Ru catalysts[J]. Journal of Catalysis,1980,66(1):101-111.[19] Gupta N,Kamble V,Rao K A,et al. On the mechanism of CO and CO2 methanation over Ru/molecular-sieve catalyst[J]. Journal of Catalysis,1979,60(1):57-67.[20] Willauer H D,Ananth R,Olsen M T,et al. Modeling and kinetic analysis of CO2 hydrogenation using a Mn and K-promoted Fe catalyst in a fixed-bed reactor[J]. Journal of CO2 Utilization,2013,3:56-64.[21] Torres Galvis H M,de Jong K P. Catalysts for production of lower olefins from synthesis gas:A review[J]. ACS Catalysis,2013,3(9):2130-2149.[22] Wang C,Xu L,Wang Q. Review of directly producing light olefins via CO hydrogenation[J]. Journal of Natural Gas Chemistry,2003,12(1):10-16.[23] Zhang Q,Kang J,Wang Y. Development of novel catalysts for Fischer-Tropsch synthesis:Tuning the product selectivity[J]. Chem. Cat. Chem.,2010,2(9):1030-1058.[24] Torres Galvis H M,Bitter J H,Khare C B,et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835-838.[25] 李梦青,邓国才,陈荣悌,等. FeCoMnK/BeO催化剂上二氧化碳加氢合成低碳烯烃的反应性能和原位FT-IR研究[J]. 催化学报,2000,21(1):71-74.[26] Riedel T,Schaub G,Jun K-W,et al. Kinetics of CO2 hydrogenation on a K-promoted Fe catalyst[J]. Ind. Eng. Chem. Res.,2001,5(40):1355-1363.[27] 郑斌,张安峰,刘民,等.纳米铁基催化剂在CO2加氢制烃中的性能[J]. 物理化学学报,2012,28(8):1943-1950.[28] 郑斌. 二氧化碳加氢制烃类铁基催化剂的制备及性能[D]. 大连:大连理工大学,2012.[29] 卢振举,林培滋,徐长海,等. CO2+H2直接合成低碳烯烃的研究[J]. 天然气化工,1993,18(1):23-27.[30] Chew L M,Ruland H,Schulte H J,et al. CO2 hydrogenation to hydrocarbons over iron nanoparticles supported on oxygen-functionalized carbon nanotubes[J]. Journal of Chemical Sciences,2014,126(2):481-486.[31] Owen R E,O'Byrne J P,Mattia D,et al. Promoter effects on iron-silica Fischer-Tropsch nanocatalysts:Conversion of carbon dioxide to lower olefins and hydrocarbons at atmospheric pressure[J]. Chem. Plus. Chem.,2013,78(12):1536-1544.[32] Ding F,Zhang A,Liu M,et al. Effect of SiO2-coating of FeK/Al2O3 catalysts on their activity and selectivity for CO2 hydrogenation to hydrocarbons[J]. RSC Advances,2014,4(17):8930.[33] 王湘波. 二氧化碳加氢合成低碳烯烃催化剂的研究[D]. 长春:长春工业大学,2012.[34] You Z Y,Deng W,Zhang Q,et al. Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst[J]. Chinese Journal of Catalysis,2013,34(5):956-963.[35] Dorner R W,Hardy D R,Williams F W,et al. K and Mn doped iron-based CO2 hydrogenation catalysts:Detection of KAlH4 as part of the catalyst's active phase[J]. Applied Catalysis A:General,2010,373(1-2):112-121.[36] Dorner R W,Hardy D R,Williams F W,et al. Effects of ceria-doping on a CO2 hydrogenation iron-manganese catalyst[J]. Catalysis Communications,2010,11(9):816-819.[37] Satthawong R,Koizumi N,Song C S,et al. Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons[J]. Journal of CO2 Utilization,2013,3-4:102-106.[38] Satthawong R,Koizumi N,Song C,et al. Comparative study on CO2 hydrogenation to higher hydrocarbons over Fe-based bimetallic catalysts[J]. Topics in Catalysis,2014,(57):588-594.[39] 刘歆颖,邓国才,郭先芝,等.铁镍双金属催化剂用于二氧化碳加氢合成低碳烯烃的研究[J]. 燃料化学学报,1999,27(5):447-450.[40] 刘歆颖,邓国才,陈荣悌,等.铁钴双金属催化剂上二氧化碳加氢合成低碳烯烃[J]. 燃料化学学报,1999,27(2):145-149.[41] Li B,Wang J,Yuan Y,et al. Carbon nanotube-supported rufe bimetallic nanoparticles as efficient and robust catalysts for aqueous-phase selective hydrogenolysis of glycerol to glycols[J]. ACS Catalysis,2011,1(11):1521-1528.[42] Fujimoto K,Shikada T. Selective synthesis of C2-C5 hydrocarbons from carbon dioxide utilizing a hybrid catalyst composed of a methanol synthesis catalyst and zeolite[J]. Applied Catalysis,1987,31(1):13-23.[43] Bai R X,Tan Y,Han Y. Study on the carbon dioxide hydrogenation to iso-alkanes over Fe-Zn-M/zeolite composite catalysts[J]. Fuel Processing Technology,2004,86(3):293-301.[44] Inui T,Takeguchi T. Effective conversion of carbon dioxide and hydrogen to hydrocarbons[J]. Catalysis Today,1991,10(1):95-106.[45] Fujiwara M,Sakurai H,Shiokawa K,et al. Synthesis of C2+ hydrocarbons by CO2 hydrogenation over the composite catalyst of Cu-Zn-Al oxide and HB zeolite using two-stage reactor system under low pressure[J]. Catalysis Today,2015,242:255-260.[46] 桂霞,王陈魏,云志,等.燃烧前CO2捕集技术研究进展[J]. 化工进展,2014,33(7):1895-1901.[47] Keith D W,Ha-duong M,Stolaroff J K. Climate strategy with CO2 capture from the air[J]. Climatic Change,2006,74(1-3):2006.[48] Sumida K,Rogow D L,Mason J A,et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem. Rev.,2012,112(2):724-781.[49] Furukawa H,Ko N,Go Y B,et al. Ultrahigh porosity in metal-organic frameworks[J]. Science,2010,329(5990):424-428.[50] 郑修新,张晓云,余青霓,等. CO2 吸收材料的研究进展[J]. 化工进展,2012,31(2):360-366.[51] 张立武,单春晖. 新型CO2捕获材料研究进展[J]. 化工新型材料,2011,39(9):18-20. |