化工进展 ›› 2016, Vol. 35 ›› Issue (07): 2222-2235.DOI: 10.16085/j.issn.1000-6613.2016.07.040
王鲁元, 程星星, 王志强, 张兴宇, 马春元
收稿日期:
2015-12-01
修回日期:
2016-01-23
出版日期:
2016-07-05
发布日期:
2016-07-05
通讯作者:
程星星,副研究员,研究方向为燃煤污染脱除。E-mail:xcheng@sdu.edu.cn。
作者简介:
王鲁元(1988-),男,博士,研究方向为燃煤污染脱除。
基金资助:
WANG Luyuan, CHENG Xingxing, WANG Zhiqiang, ZHANG Xingyu, MA Chunyuan
Received:
2015-12-01
Revised:
2016-01-23
Online:
2016-07-05
Published:
2016-07-05
摘要: 面对日益严重的环境问题,燃煤烟气催化脱硝技术得到了较快发展。针对目前应用较为广泛的选择性催化还原脱硝技术,本文从催化脱硝技术的机理出发综述了低温催化脱硝方面的研究进展,将低温催化脱硝技术分成两大类:低温氨法选择性催化还原脱硝技术和低温非氨法催化脱硝技术。在低温氨法选择性催化还原脱硝技中总结了金属氧化物催化剂、分子筛催化剂以及碳基催化剂等的反应机理和反应过程,揭示了影响脱硝效率的各种因素;低温非氨法催化脱硝技术中从反应方式出发,总结了NOx催化裂解技术、HC-SCR技术、NOx吸附-还原技术以及CO催化脱硝技术的研究进展,并对反应影响因素进行了综述。探索了各种催化剂的优势和不足之处:低温NH3-SCR技术具有选择性高、效率高的特点但是其还原剂价格较贵且存储运输较为困难;低温非氨法催化脱硝技术选择性差、效率低,但是还原剂价格低廉、易于制备,且在工艺方面改进时可以达到要求的效率。在此基础上本文展望了未来低温催化脱硝的研究方向:在降低脱硝成本的情况下改善催化脱硝工艺,大力发展氮氧化物吸附还原等技术。
中图分类号:
王鲁元, 程星星, 王志强, 张兴宇, 马春元. 低温催化脱硝技术的研究进展[J]. 化工进展, 2016, 35(07): 2222-2235.
WANG Luyuan, CHENG Xingxing, WANG Zhiqiang, ZHANG Xingyu, MA Chunyuan . Recent research progress in catalytic reduction of NOx at low temperature[J]. Chemical Industry and Engineering Progree, 2016, 35(07): 2222-2235.
[1] 毛健雄,毛健全,赵树民. 煤的清洁燃烧[M]. 北京:科学出版社,1998. [2] 钟标城,周广英,王文辉,等. Fe掺杂对 MnOx 催化剂结构性质及低温SCR反应机制的影响[J]. 环境科学学报,2011,31(10):2091-2101. [3] 张强,许世森,王志强. 选择性催化还原烟气脱硝技术进展及工程应用[J]. 热力发电,2004,33(4):1-6. [4] 韦正乐,黄碧纯,叶代启,等. 烟气NOx低温选择性催化还原催化剂研究进展[J]. 化工进展,2007,26(3):320-325. [5] 徐青,郑章靖,凌长明,等. 低温选择性催化还原脱除NOx的催化剂的研究进展[J]. 环境污染与防治,2011,33(6):81-85. [6] CHANG H,Li J,CHEN X,et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia:enhancement of activity and remarkable resistance to SO2[J]. Catalysis Communications,2012,27:54-57. [7] MA L,CHENG Y,CAVATAIO G,et al. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chemical Engineering Journal,2013,225:323-330. [8] KOEBEL M,ELSENER M,MADIA G. Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperatures[J]. Industrial & Engineering Chemistry Research,2001,40(1):52-59. [9] SALKER A V,WEISWEILER W. Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions[J]. Applied Catalysis A:General,2000,203(2):221-229. [10] DEVADAS M,KRÖCHER O,ELSENER M,et al. Influence of NO2 on the selective catalytic reduction of NO with ammonia over Fe-ZSM5[J]. Applied Catalysis B:Environmental,2006,67(3):187-196. [11] RICHTER M,TRUNSCHKE A,BENTRUP U,et al. Selective catalytic reduction of nitric oxide by ammonia over egg-shell MnOx/NaY composite catalysts[J]. Journal of Catalysis,2002,206(1):98-113. [12] WEI Z S,DU Z Y,LIN Z H,et al. Removal of NOx by microwave reactor with ammonium bicarbonate and Ga-A zeolites at low temperature[J]. Energy,2007,32(8):1455-1459. [13] 戴韵. 影响锰基催化剂低温脱硝活性的主要因素研究[D]. 北京:清华大学,2012. [14] LI J,CHEN J,KE R,et al. Effects of precursors on the surface Mn species and the activities for NO reduction over MnOx/TiO2 catalysts[J]. Catalysis Communications,2007,8(12):1896-1900. [15] PENA D A,UPHADE B S,SMIRNIOTIS P G. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3:Ⅰ. Evaluation and characterization of first row transition metals[J]. Journal of Catalysis,2004,221(2):421-431. [16] WU Z,JIANG B,LIU Y,et al. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by sol-gel method[J]. Journal of Hazardous Materials,2007,145(3):488-494. [17] WU Z,JIANG B,LIU Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental,2008,79(4):347-355. [18] KANTCHEVA M. Identification,stability,and reactivity of NOxspecies adsorbed on titania-supported manganese catalysts[J]. Journal of Catalysis,2001,204(2):479-494. [19] 闫志勇,高翔,吴杰,等. V2O5-WO3-MoO3/TiO2 催化剂制备及NH3选择性还原NOx的试验研究[J]. 动力工程,2007,27(2):282-286. [20] LONG R Q,CHANG M T,YANG R T. Enhancement of activities by sulfation on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of NO by ammonia[J]. Applied Catalysis B:Environmental,2001,33(2):97-107. [21] 刘炜,童志权,罗婕. Ce-Mn/TiO2催化剂选择性催化还原NO的低温活性及抗毒化性能[J]. 环境科学学报,2006,26(8):1240-1245. [22] CHANG H,CHEN X,LI J,et al. Improvement of activity and SO2 tolerance of Sn-modified Mnx-CeO2 catalysts for NH3-SCR at low temperatures[J]. Environmental Science & Technology,2013,47(10):5294-5301. [23] RAMIS G,LARRUBIA M A. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3/Al2O3 SCR catalysts[J]. Journal of Molecular Catalysis A:Chemical,2004,215(1):161-167. [24] 唐晓龙,郝吉明,徐文国,等. 新型 MnOx 催化剂用于低温 NH3 选择性催化还原 NOx[J]. 催化学报,2006,27(10):843-848. [25] QI G,YANG R T. Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental,2005,60(1):13-22. [26] KANG M,PARK E D,KIM J M,et al. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catalysis Today,2006,111(3):236-241. [27] IRFAN M F,GOO J H,KIM S D. Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process[J]. Applied Catalysis B:Environmental,2008,78(3):267-274. [28] 唐晓龙. 低温选择性催化还原 NOx 技术及反应机理[M]. 北京:冶金工业出版社,2007. [29] LUO J Z,GAO L Z,LEUNG Y L,et al. The decomposition of NO on CNTs and 1wt% Rh/CNTs[J]. Catalysis Letters,2000,66(1-2):91-97. [30] HUANG B,HUANG R,JIN D,et al. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides[J]. Catalysis Today,2007,126(3):279-283. [31] CHEN X,GAO S,WANG H,et al. Selective catalytic reduction of NO over carbon nanotubes supported CeO2[J]. Catalysis Communications,2011,14(1):1-5. [32] FANG C,ZHANG D,SHI L,et al. Highly dispersed CeO2 on carbon nanotubes for selective catalytic reduction of NO with NH3[J]. Catalysis Science & Technology,2013,3(3):803-811. [33] WANG L,HUANG B,SU Y,et al. Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3:catalytic activity and characterization[J]. Chemical Engineering Journal,2012,192:232-241. [34] FAN X,QIU F,YANG H,et al. Selective catalytic reduction of NOx with ammonia over Mn-Ce-Ox/TiO2-carbon nanotube composites[J]. Catalysis Communications,2011,12(14):1298-1301. [35] 苏艳霞. 碳纳米管负载锰氧化物的 NH3-SCR 反应性能及机理研究[D]. 广州:华南理工大学,2013. [36] 肖长发. 活性炭纤维及其应用[J]. 高科技纤维与应用,2001,26(4):27-31. [37] 张鹏宇,杨巧云,许绿丝,等. 活性炭纤维低温吸附氧化 NO 的试验研究[J]. 电力环境保护,2004,20(2):25-28. [38] MUNIZ J,MARBAN G,FUERTES A B. Low temperature selective catalytic reduction of NO over modified activated carbon fibres[J]. Applied Catalysis B:Environmental,2000,27(1):27-36. [39] YOSHIKAWA M,YASUTAKE A,MOCHIDA I. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers[J]. Applied Catalysis A:General,1998,173(2):239-245. [40] 沈伯雄,郭宾彬,史展亮,等. CeO2/ACF 的低温 SCR 烟气脱硝性能研究[J]. 燃料化学学报,2007,35(1):125-128. [41] MARBÁN G,FUERTES A B. Low-temperature SCR of NOx with NH3 over Nomex™ rejects-based activated carbon fibre composite-supported manganese oxides:Part Ⅱ. Effect of procedures for impregnation and active phase formation[J]. Applied Catalysis B:Environmental,2001,34(1):55-71. [42] GARCIA-BORDEJÉ E,CALVILLO L,LÁZARO M J,et al. Vanadium supported on carbon-coated monoliths for the SCR of NO at low temperature:effect of pore structure[J]. Applied Catalysis B:Environmental,2004,50(4):235-242. [43] 刘守军,刘振宇,朱珍平,等. CuO/AC 低温脱除烟气中 SOx 和 NOx 的研究[J]. 燃料化学学报,1999,27(1):192-198. [44] 周愉千,刘超,宋鹏,等. CeOx/AC 催化剂 NH3 选择性催化还原 NO[J]. 环境工程学报,2012,6(8):2720-2724. [45] PASEL J,KÄßNER P,MONTANARI B,et al. Transition metal oxides supported on active carbons as low temperature catalysts for the selective catalytic reduction (SCR) of NO with NH3[J]. Applied Catalysis B:Environmental,1998,18(3):199-213. [46] ZHU Z,LIU Z,LIU S,et al. A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3 at low temperatures[J]. Applied Catalysis B:Environmental,1999,23(4):L229-L233. [47] OBERLIN A. Carbonization and graphitization[J]. Carbon,1984,22(6):521-541. [48] GENTRY F M. Technology of low temperature carbonization[J]. Nature,1929,124:2-4. [49] 王萍. 改性活性半焦脱除烟气中 NOx 的研究[D]. 青岛:中国海洋大学,2010. [50] 郭瑞莉. 活性半焦用于烟气脱硫脱硝的研究[D]. 青岛:中国海洋大学,2009. [51] XIE Q,ZHANG X L,CHEN Q R,et al. Influence of surface modification by nitric acid on the dispersion of copper nitrate in activated carbon[J]. New Carbon Materials,2003,18(3):203-208. [52] 张丽,李春虎,侯影飞,等. 活性半焦吸附剂吸附脱除 FCC 汽油中硫的研究[J]. 环境化学,2008,27(3):301-304. [53] ZHU Z P,LIU Z Y,LIU S J,et al. Flue gas NOx removal by SCR with NH3 on CuO/AC at low temperatures[J]. Studies in Surface Science and Catalysis,2000,130:1385-1390. [54] CHEN Y,WANG J P,YAN Z,et al. Promoting effect of Nd on the reduction of NO with NH3 over CeO2 supported by activated semi-coke:an in situ DRIFTS study[J]. Catalysis Science & Technology,2015,5(4):2251-2259. [55] WANG J P,YAN Z,LIU L,et al. Low-temperature SCR of NO with NH3 over activated semi-coke composite-supported rare earth oxides[J]. Applied Surface Science,2014,309:1-10. [56] SAZAMA P,WICHTERLOVÁ B,TÁBOR E,et al. Tailoring of the structure of Fe-cationic species in Fe-ZSM-5 by distribution of Al atoms in the framework for N2O decomposition and NH3-SCR-NOx[J]. Journal of Catalysis,2014,312:123-138. [57] BOROŃ P,CHMIELARZ L,GURGUL J,et al. The influence of the preparation procedures on the catalytic activity of Fe-BEA zeolites in SCR of NO with ammonia and N2O decomposition[J]. Catalysis Today,2014,235:210-225. [58] XIA H,SUN K,LIU Z,et al. The promotional effect of NO on N2O decomposition over the Bi-nuclear Fe sites in Fe/ZSM-5[J]. Journal of Catalysis,2010,270(1):103-109. [59] BERA P,SEENIVASAN H,RAJAM K S,et al. Characterization of amorphous Co-P alloy coatings electrodeposited with pulse current using gluconate bath[J]. Applied Surface Science,2012,258(24):9544-9553. [60] BAI B,ARANDIYAN H,LI J. Comparison of the performance for oxidation of formaldehyde on nano-Co3O4,2D-Co3O4,and 3D-Co3O4 catalysts[J]. Applied Catalysis B:Environmental,2013,142:677-683. [61] PASHA N,LINGAIAH N,BABU N S,et al. Studies on cesium doped cobalt oxide catalysts for direct N2O decomposition in the presence of oxygen and steam[J]. Catalysis Communications,2008,10(2):132-136. [62] NAKAMURA I,HANEDA M,HAMADA H,et al. Direct decomposition of nitrogen monoxide over a K-deposited Co (0001) surface:comparison to K-doped cobalt oxide catalysts[J]. Journal of Electron Spectroscopy and Related Phenomena,2006,150(2):150-154. [63] HANEDA M,TSUBOI G,NAGAO Y,et al. Direct decomposition of NO over alkaline earth metal oxide catalysts supported on cobalt oxide[J]. Catalysis Letters,2004,97(3/4):145-150. [64] ZHANG Zhaoliang,MA Jun,LIU Zhaoqing,et al. Titanium-promoted cobalt sulfide catalysts for no decomposition and reduction by CO[J]. Chemistry Letters,2001(5):464-465. [65] HAMADA H,KINTAICHI Y,SASAKI M,et al. Silver-promoted cobal oxide catalysts for direct decomposition of nitrogen monoxide[J]. Chemistry Letters,1990(7):1069-1070. [66] RAO G R,KAŠPAR J,MERIANI S,et al. NO decomposition over partially reduced metallized CeO2-ZrO2 solid solutions[J]. Catalysis Letters,1994,24(1/2):107-112. [67] IWAMOTO M,YAHIRO H,TANDA K,et al. Removal of nitrogen monoxide through a novel catalytic process. 1. Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites[J]. The Journal of Physical Chemistry,1991,95(9):3727-3730. [68] JABŁOŃSKA M,PALKOVITS R. Nitrogen oxide removal over hydrotalcite-derived mixed metal oxides[J]. Catalysis Science & Technology,2016,6(1):49-72. [69] SHIN H K,HIRABAYASHI H,YAHIRO H,et al. Selective catalytic reduction of NO by ethene in excess oxygen over platinum ion-exchanged MFI zeolites[J]. Catalysis Today,1995,26(1):13-21. [70] MRAD R,AISSAT A,COUSIN R,et al. Catalysts for NOx selective catalytic reduction by hydrocarbons (HC-SCR)[J]. Applied Catalysis A:General,2015,504:542-548 [71] RUBERT A A,QUINCOCES C E,MAMEDE A S,et al. Preparation and characterization of Pd-Co/sulfated zirconia catalysts for no selective reduction by methane[J]. Catalysis Communications,2008,9(6):1096-1100. [72] IWAMOTO M,YAHIRO H. Novel catalytic decomposition and reduction of NO[J]. Catalysis Today,1994,22(1):5-18. [73] HALASZ I,BRENNER A,NG K Y S,et al. Catalytic activity and selectivity of H-ZSM5 for the reduction of nitric oxide by propane in the presence of oxygen[J]. Journal of Catalysis,1996,161(1):359-372. [74] PALOMARES A E,FRANCH C,CORMA A. Determining the characteristics of a Co-zeolite to be active for the selective catalytic reduction of NOx with hydrocarbons[J]. Catalysis Today,2011,176(1):239-241. [75] CORMA A,FORNE V,PALOMARES E. Selective catalytic reduction of NOx on Cu-beta zeolites[J]. Applied Catalysis B:Environmental,1997,11(2):233-242. [76] CHAJAR Z,PRIMET M,PRALIAUD H,et al. Influence of the preparation method on the selective reduction of nitric oxide over Cu-ZSM-5. Nature of the active sites[J]. Applied Catalysis B:Environmental,1994,4(2):199-211. [77] WANG X,CHEN H,SACHTLER W M H. Selective reduction of NOx with hydrocarbons over Co/MFI prepared by sublimation of CoBr2 and other methods[J]. Applied Catalysis B:Environmental,2001,29(1):47-60. [78] RUGGERI M P,SELLERI T,COLOMBO M,et al. Identification of nitrites/HONO as primary products of NO oxidation over Fe-ZSM-5 and their role in the Standard SCR mechanism:a chemical trapping study[J]. Journal of Catalysis,2014,311:266-270. [79] WANG Y,ZHU A,ZHANG Y,et al. Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction[J]. Applied Catalysis B:Environmental,2008,81(1):141-149. [80] ARMOR J N. Catalytic reduction of nitrogen oxides with methane in the presence of excess oxygen:a review[J]. Catalysis Today,1995,26(2):147-158. [81] REN L,ZHANG T,LIANG D,et al. Effect of addition of Zn on the catalytic activity of a Co/HZSM-5 catalyst for the SCR of NOx with CH4[J]. Applied Catalysis B:Environmental,2002,35(4):317-321. [82] CHENG X,BI X T. Modeling NOx Adsorption onto Fe/ZSM-5 catalysts in a fixed bed reactor[J]. International Journal of Chemical Reactor Engineering,2013,11(1):19-30. [83] TAKAHASHI N SHINJOH H,IIJIMA T,et al. The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst[J]. Catalysis Today,1996,27(1):63-69. [84] YANG T T,BI H T,CHENG X. Effects of O2,CO2 and H2O on NOx adsorption and selective catalytic reduction over Fe/ZSM-5[J]. Applied Catalysis B:Environmental,2011,102(1):163-171. [85] 常晓飞. 常温下 NOx 高效吸脱附剂的研究[D]. 广州:华东理工大学,2012. [86] 张振,王涛,马春元,等. 低氧快速热解过程中氧气体积分数对活性焦孔隙结构的影响[J]. 煤炭学报,2014,39(10):2107-2113. [87] 刘海弟,魏连启,岳仁亮,等. 用于 NOx 低温下吸附还原的 CoOx/CeO2 二元氧化物的制备[J]. 无机化学学报,2010(5):749-756. [88] 孙晶,徐铮. 活性炭材料在火电厂烟气脱硫脱硝中的应用[J]. 电力环境保护,2008,24(1):5-7. [89] YAO X,TANG C,JI Z,et al. Investigation of the physicochemical properties and catalytic activities of Ce0.67M0.33O2 (M= Zr4+,Ti4+,Sn4+) solid solutions for NO removal by CO[J]. Catalysis Science & Technology,2013,3(3):688-698. [90] SUN C,TANG Y,GAO F,et al. Effects of different manganese precursors as promoters on catalytic performance of CuO-MnOx/TiO2 catalysts for NO removal by CO[J]. Physical Chemistry Chemical Physics,2015,17(24):5996-6006 [91] KACIMI M,ZIYAD M,LIOTTA L F. Cu on amorphous AlPO4:preparation,characterization and catalytic activity in NO reduction by CO in presence of oxygen[J]. Catalysis Today,2015,241:151-158. [92] YAO X,XIONG Y,ZOU W,et al. Correlation between the physicochemical properties and catalytic performances of CexSn1-xO2 mixed oxides for NO reduction by CO[J]. Applied Catalysis B:Environmental,2014,144:152-165. [93] GU X R,LI H,LIU L C,et al. Promotional effect of CO pretreatment on CuO/CeO2 catalyst for catalytic reduction of NO by CO[J]. Journal of Rare Earths,2014,32(2):139-145. [94] 葛成艳. 负载型铜基催化剂在催化CO还原NO反应中性能的基础研究[D]. 南京:南京大学,2014. [95] DONG L,ZHANG B,TANG C,et al. Influence of CeO2 modification on the properties of Fe2O3-Ti0.5Sn0.5O2 catalyst for NO reduction by CO[J]. Catalysis Science & Technology,2014,4(2):482-493. [96] WAN H,LI D,DAI Y,et al. Catalytic behaviors of CuO supported on Mn2O3 modified γ-Al2O3 for NO reduction by CO[J]. Journal of Molecular Catalysis A:Chemical,2010,332(1):32-44. [97] LIU L,CHEN Y,DONG L,et al. Investigation of the NO removal by CO on CuO-CoOx binary metal oxides supported on Ce0.67Zr0.33O2[J]. Applied Catalysis B:Environmental,2009,90(1):105-114. [98] SIMONOT L,MAIRE G. A comparative study of LaCoO3,CO3O4 and a mix of LaCoO3-Co3O4:Ⅱ. Catalytic properties for the CO+ NO reaction[J]. Applied Catalysis B:Environmental,1997,11(2):181-191. [99] MEHANDJIEV D,BEKYAROVA E. Catalytic neutralization of NO on a carbon-supported cobalt oxide catalyst[J]. Journal of Colloid and Interface Science,1994,166(2):476-480. [100] MEHANDJIEV D,KHRISTOVA M,BEKYAROVA E. Conversion of NO on Co-impregnated active carbon catalysts[J]. Carbon,1996,34(6):757-762. [101] STEGENGA S,VAN S R,KAPTEIJN F,et al. Nitric oxide reduction and carbon monoxide oxidation over carbon-supported copper-chromium catalysts[J]. Applied Catalysis B:Environmental,1993,2(4):257-275. [102] ROSAS J M,RODRÍGUEZ-MIRASOL J,CORDERO T. NO reduction on carbon-supported chromium catalysts[J]. Energy & Fuels,2010,24(6):3321-3328. [103] CHEN L,LI J,ABLIKIM W,et al. CeO2-WO3 mixed oxides for the selective catalytic reduction of NOxby NH3 over a wide temperature range[J]. Catalysis Letters,2011,141(12):1859-1864. [104] 肖建华,李雪辉,徐建昌,等. NOx储存-还原催化净化技术研究进展[J]. 现代化工,2005,25(8):15-19. [105] CHANG H,LI J,CHEN X,et al. Effect of Sn on MnOx-CeO2 catalyst for SCR of NOx by ammonia:enhancement of activity and remarkable resistance to SO2[J]. Catalysis Communications,2012,27:54-57. [106] KANAZAWA T. Development of hydrocarbon adsorbents,oxygen storage materials for three-way catalysts and NOx storage-reduction catalyst[J]. Catalysis Today,2004,96(3):171-177. [107] SHAYMURAT T,TANG Q,TONG Y,et al. Gas dielectric transistor of CuPc single crystalline nanowire for SO2 detection down to sub-ppm levels at room temperature[J]. Advanced Materials,2013,25(16):2269-2273. [108] 刘赵穹,马骏,杨锡尧. CO为还原剂同时还原SO2和NO的SnO2-TiO2固溶体催化剂 I. 催化剂的催化性能[J]. 催化学报,2004,25(4):297-301. [109] XIONG Y,TANG C,YAO X,et al. Effect of metal ions doping (M=Ti4+,Sn4+) on the catalytic performance of MnOx/CeO2 catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis A:General,2015,495:206-216. [110] LI K,TANG X,YI H,et al. Low-temperature catalytic oxidation of NO over Mn-Co-Ce-Ox catalyst[J]. Chemical Engineering Journal,2012,192:99-104. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[7] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[11] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[12] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[13] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[14] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[15] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |