化工进展 ›› 2016, Vol. 35 ›› Issue (10): 3005-3015.DOI: 10.16085/j.issn.1000-6613.2016.11.001
周瑾洁, 王旭东, 孙亚琴, 修志龙
收稿日期:
2016-01-29
修回日期:
2016-03-09
出版日期:
2016-10-05
发布日期:
2016-10-05
通讯作者:
修志龙,教授,主要从事生物基化学品发酵及分离研究。E-mail:zhlxiu@dlut.edu.cn
作者简介:
周瑾洁(1991-),女,博士研究生。
基金资助:
ZHOU Jinjie, WANG Xudong, SUN Yaqin, XIU Zhilong
Received:
2016-01-29
Revised:
2016-03-09
Online:
2016-10-05
Published:
2016-10-05
摘要: 微生物电合成是结合微生物学与电化学的新兴研究方向。电化学活性菌株以直接或间接的方式吸收人工提供的外源电子,打破胞内代谢原有的氧化还原平衡,定向催化底物合成还原性目的产物。近年来,基于生物基化学品的微生物电合成取得广泛关注。本文综述了生物基化学品微生物电合成的基本原理及最新研究进展,并讨论了电化学活性菌株的种类、电子传递机制以及典型的菌株培养方式,同时结合菌株代谢途径,讨论了微生物电合成促进乙酸、1,3-丙二醇、丁醇、琥珀酸等生物基化学品的作用机理及研究现状。最后指出了电子传递机制、电子传递效率及成本是限制该技术发展的关键问题及未来的发展趋势,旨在推动该技术应用于生物基化学品的发酵工业中。
中图分类号:
周瑾洁, 王旭东, 孙亚琴, 修志龙. 生物基化学品的微生物电合成研究进展[J]. 化工进展, 2016, 35(10): 3005-3015.
ZHOU Jinjie, WANG Xudong, SUN Yaqin, XIU Zhilong. Progress on microbial electrosynthesis of bio-based chemicals[J]. Chemical Industry and Engineering Progree, 2016, 35(10): 3005-3015.
[1] PEL H J,DE WINDE J H,ARCHER D B,et al.Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88[J].Nat.Biotechnol.,2007,25(2):221-231. [2] 秦义,董志姚,刘立明,等.工业微生物中NADH的代谢调控[J].生物工程学报,2009,25(2):161-169. [3] RABAEY K,ROZENDAL R A.Microbial electrosynthesis——revisiting the electrical route for microbial production[J].Nat.Rev.Microbiol.,2010,8(10):706-716. [4] PANT D,SINGH A,VAN BOGAERT G,et al.Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters[J].RSC Adv.,2012,2(4):1248-1263. [5] HONGO M,IWAHARA M.Application of electro-energizing method to L-glutamic acid fermentation[J].Agricultural and Biological Chemistry,1979,43(10):2075-2081. [6] HONGO M,NOMURA Y,IWAHARA M.Novel method of lactic acid production by electrodialysis fermentation[J].Applied and Environmental Microbiology,1986,52(2):314-319. [7] SCHUPPERT B,SCHINK B,TRÖSCH W.Batch and continuous production of propionic acid from whey permeate by propionibacterium acidi-propionici in a three-electrode amperometric culture system[J].Applied Microbiology and Biotechnology,1992,37(5):549-553. [8] KIM T S,KIM B H.Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent[J].Biotechnology Letters,1988,10(2):123-128. [9] PARK D H,ZEIKUS J G.Utilization of electrically reduced neutral red by Actinobacillus succinogenes:physiological function of neutral red in membrane-driven fumarate reduction and energy conservation[J].Journal of Bacteriology,1999,181(8):2403-2410. [10] MARSILI E,ROLLEFSON J B,BARON D B,et al.Microbial biofilm voltammetry:direct electrochemical characterization of catalytic electrode-attached biofilms[J].Appl.Environ.Microbiol.,2008,74(23):7329-7337. [11] MARSHALL C W,ROSS D E,FICHOT E B,et al.Electrosynthesis of commodity chemicals by an autotrophic microbial community[J].Appl.Environ.Microbiol.,2012,78(23):8412-8420. [12] HERNÁNDEZ FERNÁNDEZ F J,DE LOS RÍOS A P,SALAR-GARCÍA M J,et al.Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment[J].Fuel Processing Technology,2015,138:284-297. [13] PANDIT A V,MAHADEVAN R.In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals[J].Microb.Cell Fact.,2011,10(1):76. [14] THRASH J C,COATES J D.Review:direct and indirect electrical stimulation of microbial metabolism[J].Environmental Science&Technology,2008,42(11):3921-3931. [15] SYDOW A,KRIEG T,MAYER F,et al.Electroactive bacteria——molecular mechanisms and genetic tools[J].Appl.Microbiol.Biotechnol.,2014,98(20):8481-8495. [16] MYERS C R,NEALSON K H.Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J].Science,1988,240(4857):1319-1321. [17] LOVLEY D R,PHILLIPS E J P.Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J].Applied and Environmental Microbiology,1988,54(6):1472-1480. [18] PATIL S A,HÁGERHÁLL C,GORTON L.Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems[J].Bioanalytical Reviews,2012,4(2-4):159-192. [19] KATO S.Biotechnological aspects of microbial extracellular electron transfer[J].Microbes Environ.,2015,30(2):133-139. [20] STRYCHARZ S M,GLAVEN R H,COPPI M V,et al.Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens[J].Bioelectrochemistry,2011,80(2):142-150. [21] BUSALMEN J P,Esteve-NÚÑEZ A,BEMÁ A,et al.C-type cytochromes wire electricity-producing bacteria to electrodes[J].Angew.Chem.Int.Ed.Engl.,2008,47(26):4874-4877. [22] MALVANKAR N S,VARGAS M,NEVIN K,et al.Structural basis for metallic-like conductivity in microbial nanowires[J].Mbio.,2015,6(2):e00084-15. [23] BAJRACHARYA S,TER HEIJNE A,BENETTON X D,et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode[J].Bioresour Technol.,2015,195:14-24. [24] MARSILI E,BARON D B,SHIKHARE I D,et al.Shewanella secretes flavins that mediate extracellular electron transfer[J].Proceedings of the National Academy of Sciences,2008,105(10):3968-3973. [25] BOON N,AELTERMAN P,CLAUWAERT P,et al.Metabolites produced by Pseudomonas sp.enable a Gram-positive bacterium to achieve extracellular electron transfer[J].Applied Microbiology and Biotechnology,2007,77(5):1119-1129. [26] DENG L F,LI F B,ZHOU S G,et al.A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells[J].Chinese Science Bulletin,2010,55(1):99-104. [27] CHOI O,UM Y,SANG B I.Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor[J].Biotechnology and Bioengineering,2012,109(10):2494-2502. [28] PARK D H,LAIVENIEKS M,GUETTLER M V,et al.Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J].Applied and Environmental Microbiology,1999,65(7):2912-2917. [29] MILLIKEN C E,MAY H D.Sustained generation of electricity by the spore-forming,Gram-positive,Desulfitobacterium hafniense strain DCB2[J].Applied Microbiology and Biotechnology,2007,73(5):1180-1189. [30] ROSENBAUM M,AULENTA F,VILLANO M,et al.Cathodes as electron donors for microbial metabolism:which extracellular electron transfer mechanisms are involved?[J].Bioresour Technol.,2011,102(1):324-333. [31] HE A Y,YIN C Y,XU H,et al.Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4[J].Bioprocess.Biosyst Eng.,2016,39(2):245-254. [32] ZHAO Y,CAO W,WANG Z,et al.Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells[J].Bioresource Technology,2016,202:152-157. [33] HARRINGTON T D,MOHAMED A,TRAN V N.Neutral red-mediated microbial electrosynthesis by Escherichia coli,Klebsiella pneumoniae,and Zymomonas mobilis[J].Bioresour Technol.,2015,195:57-65. [34] HARRINGTON T D,TRAN V N,MOHAMED A,et al.The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli:menaquinone reduction[J].Bioresour.Technol.,2015,192:689-695. [35] ZHANG L,ZHOU S,ZHUANG L,et al.Microbial fuel cell based on Klebsiella pneumoniae biofilm[J].Electrochemistry Communications,2008,10:1641-1643. [36] CHOI O,KIM T,WOO H M.Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum[J].Sci.Rep.,2014,4:6961. [37] HEIDELBERG J F,PAULSEN I T,NELSON K E,et al.Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J].Nat.Biotechnol.,2002,20(11):1118-1123. [38] METHE B A,NELSON K E,EISEN J A,et al.Genome of Geobacter sulfurreducens:metal reduction in subsurface environments[J].Science,2003,302(5652):1967-1969. [39] VALDÈS J,PEDROSO I,QUATRINI R,et al.Comparative genome analysis of Acidithiobacillus ferrooxidans,A.thiooxidans and A.caldus:insights into their metabolism and ecophysiology[J].Hydrometallurgy,2008,94(1-4):180-184. [40] LEANG C,UEKI T,NEVIN K P,et al.A genetic system for Clostridium ljungdahlii:a chassis for autotrophic production of biocommodities and a model homoacetogen[J].Applied and Environmental Microbiology,2013,79(4):1102-1109. [41] KÖPKE M,HELD C,HUJER S,et al.Clostridium ljungdahlii represents a microbial production platform based on syngas[J].Proceedings of the National Academy of Sciences,2010,107(29):13087-13092. [42] INGRAM L O,CONWAY T,CLARK D P,et al.Genetic engineering of ethanol production in Escherichia coli[J].Applied and Environmental Microbiology,1987,53(10):2420-2425. [43] TANG X,TAN Y,ZHU H,et al.Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli[J].Applied and Environmental Microbiology,2009,75(6):1628-1634. [44] NIELSEN D R,YOON S H,YUAN C J,et al.Metabolic engineering of acetoin and meso-2,3-butanediol biosynthesis in E.coli[J].Biotechnol.Journey,2010,5(3):274-284. [45] ERAVEST M A,AJO-FRANKLIN C M.Transforming exoelectrogens for biotechnology using synthetic biology[J].Biotechnology and Bioengineering,2016,113(4):687-697. [46] STURM-RICHTER K,GOLITSCH F,STURM G,et al.Unbalanced ermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells[J].Bioresource Technology,2015,186:89-96. [47] TERAVEST M A,ZAJDEL T J,AJO-FRANKLIN C M,et al.The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli[J].Chem.Electro.Chem.,2014,1(11):1874-1879. [48] FLYNN J M,ROSS D E,HUNT K A,et al.Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria[J].MBio,2010,1(5):e00190-10. [49] ZHAO Z,ZHANG Y,QUAN X,et al.Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell[J].Bioresource Technology,2015,200:235-244. [50] AGHABABAIE M,FARHADIAN M,JEIHANIPOUR A,et al.Effective factors on the performance of microbial fuel cells in wastewater treatment:a review[J].Environmental Technology Reviews,2015,4(1):71-89. [51] BADER J,MAST-GERLASH E,POPOVIĆ M K,et al.Relevance of microbial coculture fermentations in biotechnology[J].Journal of Applied Microbiology,2010,109(2):371-387. [52] SPEERS A M,YOUNG J M,REGUERA G.Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium[J].Environmental Science&Technology,2014,48(11):6350-6358. [53] VENKATARAMAN A,ROSENBAUM M A,PERKINS S D,et al.Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems[J].Energy&Environmental Science,2011,4(11):4550. [54] REN Z,WARD T E,REGAN J M.Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J].Environmental Science&Technology,2007,41(13):4781-4786. [55] KIM G T,WEBSTER G,WIMPENNY J W T,et al.Bacterial community structure,compartmentalization and activity in a microbial fuel cell[J].Journal of Applied Microbiology,2006,101(3):698-710. [56] DITZIG J,LIU H,LOGAN B E.Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)[J].International Journal of Hydrogen Energy,2007,32(13):2296-2304. [57] HEIDRICH E S,DOLFING J,SCOTT K,et al.Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell[J].Applied Microbiology and Biotechnology,2013,97(15):6979-6989. [58] XAFENIAS N,ANUNOBI M S O,MAPELLI V.Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations[J].Process Biochemistry,2015,50(10):1499-1508. [59] ZHOU M,CHEN C,FREGUIA S,et al.Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol[J].Environ.Sci.Technol.,2013,47(19):11199-11205. [60] NIE H,ZHANG T,CUI M,et al.Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells[J].Phys.Chem.Chem.Phys.,2013,15(34):14290-14294. [61] PATIL S A,ARENDS J B A,VANWONTERGHEM I,et al.Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2[J].Environ.Sci.Technol.,2015,49(14):8833-8843. [62] LI H,OPGENORTH P H,WERNICK D G,et al.Integrated electromicrobial conversion of CO2 to higher alcohols[J].Science,2012,335(6076):1596-1596. [63] PEGUIN S,DELORME P,GOMA G,et al.Enhanced alcohol yields in batch cultures of Clostridium acetobutylicum using a three-electrode potentiometric system with methyl viologen as electron carrier[J].Biotechnology Letters,1994,16(3):269-274. [64] SHIN H,ZEIKUS J,JAIN M.Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae[J].Applied Microbiology and Biotechnology,2002,58(4):476-481. [65] VAN EERTEN-JANSEN M C A A,TER HEIJNE A,GROOTSCHOLTEN T I M,et al.Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures[J].ACS Sustainable Chemistry&Engineering,2013,1(5):513-518. [66] TREMBLAY P L,ZHANG T.Electrifying microbes for the production of chemicals[J].Front Microbiol.,2015,6:201. [67] NEVIN K P,HENSLEY S A,FRANKS A E,et al.Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J].Appl.Environ.Microbiol.,2011,77(9):2882-2886. [68] BALCH W E,SCHOBERTH S,TANNER R S,et al.Acetobacterium,a new genus of hydrogen-oxidizing,carbon dioxide-reducing,anaerobic bacteria[J].International Journal of Systematic and Evolutionary Microbiology,1977,27(4):355-361. [69] NEVIN K P,WOODARD T L,FRANKS A E,et al.Microbial electrosynthesis:feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J].MBio,2010,1(2):e00103-10. [70] LUNDGREN D G,SILVER M.Ore leaching by bacteria[J].Annual Reviews in Microbiology,1980,34(1):263-283. [71] MATSUMOTO N,NAKASONO S,OHMURA N,et al.Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe (Ⅲ)[J].Biotechnology and Bioengineering,1999,64(6):716-721. [72] CHENG S,XING D,CALL D F,et al.Direct biological conversion of electrical current into methane by electromethanogenesis[J].Environmental Science&Technology,2009,43(10):3953-3958. [73] SOUSSAN L,RIESS J,ERABLE B,et al.Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes[J].Electrochemistry Communications,2013,28:27-30. [74] ZENG A P.Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum[J].Bioprocess Engineering,1996,14(4):169-175. [75] DU C Y,YAN H,ZHANG Y P,et al.Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae[J].Applied Microbiology and Biotechnology,2006,69(5):554-563. [76] RABAEY K,Bioelectrochemical systems:from extracellular electron transfer to biotechnological application[M].London:IWA Publishing,2010. [77] DENNIS P G,HARNISCH F,YEOH Y K,et al.Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system[J].Applied and Environmental Microbiology,2013,79(13):4008-4014. [78] LEE S Y,PARK J H,JANG S H,et al.Fermentative butanol production by Clostridia[J].Biotechnology and Bioengineering,2008,101(2):209-228. [79] LÜTKE-EVERSLOH T,BAHL H.Metabolic engineering of Clostridium acetobutylicum:recent advances to improve butanol production[J].Current Opinion in Biotechnology,2011,22(5):634-647. [80] GALLARDO R,ACEVEDO A,QUINTER J,et al.In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply[J].Bioprocess and Biosystems Engineering,2016,39(2):295-305. [81] MCKINLAY J B,VIEILLE C,ZEIKUS J G.Prospects for a bio-based succinate industry[J].Applied Microbiology and Biotechnology,2007,76(4):727-740. [82] 奚永兰,陈可泉,李建,等.琥珀酸发酵过程中固定CO2的研究进展[J].化工进展,2010,29(7):1314-1319. [83] PARK D H,LAIVENIEKS M,GUETTLER M V,et al.Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J].Applied and Environmental Microbiology,1999,65(7):2912-2917. |
[1] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[2] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[3] | 秦凯, 杨仕林, 李俊, 储震宇, 薄翠梅. 基于卡尔曼滤波算法的葡萄糖酶生物传感器高精度检测方法[J]. 化工进展, 2023, 42(6): 3177-3186. |
[4] | 黄越, 赵立欣, 姚宗路, 于佳动, 李再兴, 申瑞霞, 安柯萌, 黄亚丽. 木质纤维类废弃物定向生物转化乳酸、乙酸研究进展[J]. 化工进展, 2023, 42(5): 2691-2701. |
[5] | 王川东, 张君奇, 刘丁源, 马媛媛, 李锋, 宋浩. 微生物共利用木糖和葡萄糖生产化学品研究进展[J]. 化工进展, 2023, 42(1): 354-372. |
[6] | 李婉麒, 杨凤娟, 贾德臣, 姜卫红, 顾阳. 合成气的生物利用与定向转化[J]. 化工进展, 2023, 42(1): 73-85. |
[7] | 刘洋, 叶小梅, 王成成, 贾昭炎, 杜静, 孔祥平, 奚永兰. 农村有机生活垃圾与不同原料厌氧共发酵工艺优化[J]. 化工进展, 2022, 41(5): 2770-2777. |
[8] | 吴涵竹, 司志豪, 秦培勇. 生物乙醇原位分离技术的研究进展[J]. 化工进展, 2022, 41(3): 1318-1329. |
[9] | 唐文秀, 王学明, 郭亮, 季立豪, 高聪, 陈修来, 刘立明. 代谢工程改造大肠杆菌生产琥珀酸[J]. 化工进展, 2022, 41(2): 938-950. |
[10] | 齐振华, 周蓉, 白亚楠, 李玉芹, 唐裕芳. 小球藻流加补料强化处理发酵废水联产高质蛋白饲料[J]. 化工进展, 2022, 41(12): 6733-6743. |
[11] | 张强, 陈诗阳. 氧气辅助湿热预处理对玉米秸秆酒精发酵的影响[J]. 化工进展, 2022, 41(1): 161-165. |
[12] | 高豪, 陆家声, 章文明, 董维亮, 方艳, 余子夷, 信丰学, 姜岷. 材料介导细胞固定化技术在生物发酵中的应用[J]. 化工进展, 2021, 40(7): 3923-3931. |
[13] | 李玲, 于泳, 胡永红. 发酵法生产利普司他汀的研究进展[J]. 化工进展, 2021, 40(4): 2251-2257. |
[14] | 李阳, 朱晨辉, 范代娣. 重组胶原蛋白的绿色生物制造及其应用[J]. 化工进展, 2021, 40(3): 1262-1275. |
[15] | 蔡的, 李树峰, 司志豪, 秦培勇, 谭天伟. 生物丁醇分离技术的研究进展及发展趋势[J]. 化工进展, 2021, 40(3): 1161-1177. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 638
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 724
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |