[1] PEL H J,DE WINDE J H,ARCHER D B,et al.Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88[J].Nat.Biotechnol.,2007,25(2):221-231. [2] 秦义,董志姚,刘立明,等.工业微生物中NADH的代谢调控[J].生物工程学报,2009,25(2):161-169. [3] RABAEY K,ROZENDAL R A.Microbial electrosynthesis——revisiting the electrical route for microbial production[J].Nat.Rev.Microbiol.,2010,8(10):706-716. [4] PANT D,SINGH A,VAN BOGAERT G,et al.Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters[J].RSC Adv.,2012,2(4):1248-1263. [5] HONGO M,IWAHARA M.Application of electro-energizing method to L-glutamic acid fermentation[J].Agricultural and Biological Chemistry,1979,43(10):2075-2081. [6] HONGO M,NOMURA Y,IWAHARA M.Novel method of lactic acid production by electrodialysis fermentation[J].Applied and Environmental Microbiology,1986,52(2):314-319. [7] SCHUPPERT B,SCHINK B,TRÖSCH W.Batch and continuous production of propionic acid from whey permeate by propionibacterium acidi-propionici in a three-electrode amperometric culture system[J].Applied Microbiology and Biotechnology,1992,37(5):549-553. [8] KIM T S,KIM B H.Electron flow shift in Clostridium acetobutylicum fermentation by electrochemically introduced reducing equivalent[J].Biotechnology Letters,1988,10(2):123-128. [9] PARK D H,ZEIKUS J G.Utilization of electrically reduced neutral red by Actinobacillus succinogenes:physiological function of neutral red in membrane-driven fumarate reduction and energy conservation[J].Journal of Bacteriology,1999,181(8):2403-2410. [10] MARSILI E,ROLLEFSON J B,BARON D B,et al.Microbial biofilm voltammetry:direct electrochemical characterization of catalytic electrode-attached biofilms[J].Appl.Environ.Microbiol.,2008,74(23):7329-7337. [11] MARSHALL C W,ROSS D E,FICHOT E B,et al.Electrosynthesis of commodity chemicals by an autotrophic microbial community[J].Appl.Environ.Microbiol.,2012,78(23):8412-8420. [12] HERNÁNDEZ FERNÁNDEZ F J,DE LOS RÍOS A P,SALAR-GARCÍA M J,et al.Recent progress and perspectives in microbial fuel cells for bioenergy generation and wastewater treatment[J].Fuel Processing Technology,2015,138:284-297. [13] PANDIT A V,MAHADEVAN R.In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals[J].Microb.Cell Fact.,2011,10(1):76. [14] THRASH J C,COATES J D.Review:direct and indirect electrical stimulation of microbial metabolism[J].Environmental Science&Technology,2008,42(11):3921-3931. [15] SYDOW A,KRIEG T,MAYER F,et al.Electroactive bacteria——molecular mechanisms and genetic tools[J].Appl.Microbiol.Biotechnol.,2014,98(20):8481-8495. [16] MYERS C R,NEALSON K H.Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor[J].Science,1988,240(4857):1319-1321. [17] LOVLEY D R,PHILLIPS E J P.Novel mode of microbial energy metabolism:organic carbon oxidation coupled to dissimilatory reduction of iron or manganese[J].Applied and Environmental Microbiology,1988,54(6):1472-1480. [18] PATIL S A,HÁGERHÁLL C,GORTON L.Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems[J].Bioanalytical Reviews,2012,4(2-4):159-192. [19] KATO S.Biotechnological aspects of microbial extracellular electron transfer[J].Microbes Environ.,2015,30(2):133-139. [20] STRYCHARZ S M,GLAVEN R H,COPPI M V,et al.Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens[J].Bioelectrochemistry,2011,80(2):142-150. [21] BUSALMEN J P,Esteve-NÚÑEZ A,BEMÁ A,et al.C-type cytochromes wire electricity-producing bacteria to electrodes[J].Angew.Chem.Int.Ed.Engl.,2008,47(26):4874-4877. [22] MALVANKAR N S,VARGAS M,NEVIN K,et al.Structural basis for metallic-like conductivity in microbial nanowires[J].Mbio.,2015,6(2):e00084-15. [23] BAJRACHARYA S,TER HEIJNE A,BENETTON X D,et al.Carbon dioxide reduction by mixed and pure cultures in microbial electrosynthesis using an assembly of graphite felt and stainless steel as a cathode[J].Bioresour Technol.,2015,195:14-24. [24] MARSILI E,BARON D B,SHIKHARE I D,et al.Shewanella secretes flavins that mediate extracellular electron transfer[J].Proceedings of the National Academy of Sciences,2008,105(10):3968-3973. [25] BOON N,AELTERMAN P,CLAUWAERT P,et al.Metabolites produced by Pseudomonas sp.enable a Gram-positive bacterium to achieve extracellular electron transfer[J].Applied Microbiology and Biotechnology,2007,77(5):1119-1129. [26] DENG L F,LI F B,ZHOU S G,et al.A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells[J].Chinese Science Bulletin,2010,55(1):99-104. [27] CHOI O,UM Y,SANG B I.Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor[J].Biotechnology and Bioengineering,2012,109(10):2494-2502. [28] PARK D H,LAIVENIEKS M,GUETTLER M V,et al.Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J].Applied and Environmental Microbiology,1999,65(7):2912-2917. [29] MILLIKEN C E,MAY H D.Sustained generation of electricity by the spore-forming,Gram-positive,Desulfitobacterium hafniense strain DCB2[J].Applied Microbiology and Biotechnology,2007,73(5):1180-1189. [30] ROSENBAUM M,AULENTA F,VILLANO M,et al.Cathodes as electron donors for microbial metabolism:which extracellular electron transfer mechanisms are involved?[J].Bioresour Technol.,2011,102(1):324-333. [31] HE A Y,YIN C Y,XU H,et al.Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4[J].Bioprocess.Biosyst Eng.,2016,39(2):245-254. [32] ZHAO Y,CAO W,WANG Z,et al.Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells[J].Bioresource Technology,2016,202:152-157. [33] HARRINGTON T D,MOHAMED A,TRAN V N.Neutral red-mediated microbial electrosynthesis by Escherichia coli,Klebsiella pneumoniae,and Zymomonas mobilis[J].Bioresour Technol.,2015,195:57-65. [34] HARRINGTON T D,TRAN V N,MOHAMED A,et al.The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli:menaquinone reduction[J].Bioresour.Technol.,2015,192:689-695. [35] ZHANG L,ZHOU S,ZHUANG L,et al.Microbial fuel cell based on Klebsiella pneumoniae biofilm[J].Electrochemistry Communications,2008,10:1641-1643. [36] CHOI O,KIM T,WOO H M.Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum[J].Sci.Rep.,2014,4:6961. [37] HEIDELBERG J F,PAULSEN I T,NELSON K E,et al.Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis[J].Nat.Biotechnol.,2002,20(11):1118-1123. [38] METHE B A,NELSON K E,EISEN J A,et al.Genome of Geobacter sulfurreducens:metal reduction in subsurface environments[J].Science,2003,302(5652):1967-1969. [39] VALDÈS J,PEDROSO I,QUATRINI R,et al.Comparative genome analysis of Acidithiobacillus ferrooxidans,A.thiooxidans and A.caldus:insights into their metabolism and ecophysiology[J].Hydrometallurgy,2008,94(1-4):180-184. [40] LEANG C,UEKI T,NEVIN K P,et al.A genetic system for Clostridium ljungdahlii:a chassis for autotrophic production of biocommodities and a model homoacetogen[J].Applied and Environmental Microbiology,2013,79(4):1102-1109. [41] KÖPKE M,HELD C,HUJER S,et al.Clostridium ljungdahlii represents a microbial production platform based on syngas[J].Proceedings of the National Academy of Sciences,2010,107(29):13087-13092. [42] INGRAM L O,CONWAY T,CLARK D P,et al.Genetic engineering of ethanol production in Escherichia coli[J].Applied and Environmental Microbiology,1987,53(10):2420-2425. [43] TANG X,TAN Y,ZHU H,et al.Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli[J].Applied and Environmental Microbiology,2009,75(6):1628-1634. [44] NIELSEN D R,YOON S H,YUAN C J,et al.Metabolic engineering of acetoin and meso-2,3-butanediol biosynthesis in E.coli[J].Biotechnol.Journey,2010,5(3):274-284. [45] ERAVEST M A,AJO-FRANKLIN C M.Transforming exoelectrogens for biotechnology using synthetic biology[J].Biotechnology and Bioengineering,2016,113(4):687-697. [46] STURM-RICHTER K,GOLITSCH F,STURM G,et al.Unbalanced ermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells[J].Bioresource Technology,2015,186:89-96. [47] TERAVEST M A,ZAJDEL T J,AJO-FRANKLIN C M,et al.The Mtr pathway of Shewanella oneidensis MR-1 couples substrate utilization to current production in Escherichia coli[J].Chem.Electro.Chem.,2014,1(11):1874-1879. [48] FLYNN J M,ROSS D E,HUNT K A,et al.Enabling unbalanced fermentations by using engineered electrode-interfaced bacteria[J].MBio,2010,1(5):e00190-10. [49] ZHAO Z,ZHANG Y,QUAN X,et al.Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell[J].Bioresource Technology,2015,200:235-244. [50] AGHABABAIE M,FARHADIAN M,JEIHANIPOUR A,et al.Effective factors on the performance of microbial fuel cells in wastewater treatment:a review[J].Environmental Technology Reviews,2015,4(1):71-89. [51] BADER J,MAST-GERLASH E,POPOVIĆ M K,et al.Relevance of microbial coculture fermentations in biotechnology[J].Journal of Applied Microbiology,2010,109(2):371-387. [52] SPEERS A M,YOUNG J M,REGUERA G.Fermentation of glycerol into ethanol in a microbial electrolysis cell driven by a customized consortium[J].Environmental Science&Technology,2014,48(11):6350-6358. [53] VENKATARAMAN A,ROSENBAUM M A,PERKINS S D,et al.Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems[J].Energy&Environmental Science,2011,4(11):4550. [54] REN Z,WARD T E,REGAN J M.Electricity production from cellulose in a microbial fuel cell using a defined binary culture[J].Environmental Science&Technology,2007,41(13):4781-4786. [55] KIM G T,WEBSTER G,WIMPENNY J W T,et al.Bacterial community structure,compartmentalization and activity in a microbial fuel cell[J].Journal of Applied Microbiology,2006,101(3):698-710. [56] DITZIG J,LIU H,LOGAN B E.Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR)[J].International Journal of Hydrogen Energy,2007,32(13):2296-2304. [57] HEIDRICH E S,DOLFING J,SCOTT K,et al.Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell[J].Applied Microbiology and Biotechnology,2013,97(15):6979-6989. [58] XAFENIAS N,ANUNOBI M S O,MAPELLI V.Electrochemical startup increases 1,3-propanediol titers in mixed-culture glycerol fermentations[J].Process Biochemistry,2015,50(10):1499-1508. [59] ZHOU M,CHEN C,FREGUIA S,et al.Carbon and electron fluxes during the electricity driven 1,3-propanediol biosynthesis from glycerol[J].Environ.Sci.Technol.,2013,47(19):11199-11205. [60] NIE H,ZHANG T,CUI M,et al.Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells[J].Phys.Chem.Chem.Phys.,2013,15(34):14290-14294. [61] PATIL S A,ARENDS J B A,VANWONTERGHEM I,et al.Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2[J].Environ.Sci.Technol.,2015,49(14):8833-8843. [62] LI H,OPGENORTH P H,WERNICK D G,et al.Integrated electromicrobial conversion of CO2 to higher alcohols[J].Science,2012,335(6076):1596-1596. [63] PEGUIN S,DELORME P,GOMA G,et al.Enhanced alcohol yields in batch cultures of Clostridium acetobutylicum using a three-electrode potentiometric system with methyl viologen as electron carrier[J].Biotechnology Letters,1994,16(3):269-274. [64] SHIN H,ZEIKUS J,JAIN M.Electrically enhanced ethanol fermentation by Clostridium thermocellum and Saccharomyces cerevisiae[J].Applied Microbiology and Biotechnology,2002,58(4):476-481. [65] VAN EERTEN-JANSEN M C A A,TER HEIJNE A,GROOTSCHOLTEN T I M,et al.Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures[J].ACS Sustainable Chemistry&Engineering,2013,1(5):513-518. [66] TREMBLAY P L,ZHANG T.Electrifying microbes for the production of chemicals[J].Front Microbiol.,2015,6:201. [67] NEVIN K P,HENSLEY S A,FRANKS A E,et al.Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J].Appl.Environ.Microbiol.,2011,77(9):2882-2886. [68] BALCH W E,SCHOBERTH S,TANNER R S,et al.Acetobacterium,a new genus of hydrogen-oxidizing,carbon dioxide-reducing,anaerobic bacteria[J].International Journal of Systematic and Evolutionary Microbiology,1977,27(4):355-361. [69] NEVIN K P,WOODARD T L,FRANKS A E,et al.Microbial electrosynthesis:feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J].MBio,2010,1(2):e00103-10. [70] LUNDGREN D G,SILVER M.Ore leaching by bacteria[J].Annual Reviews in Microbiology,1980,34(1):263-283. [71] MATSUMOTO N,NAKASONO S,OHMURA N,et al.Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe (Ⅲ)[J].Biotechnology and Bioengineering,1999,64(6):716-721. [72] CHENG S,XING D,CALL D F,et al.Direct biological conversion of electrical current into methane by electromethanogenesis[J].Environmental Science&Technology,2009,43(10):3953-3958. [73] SOUSSAN L,RIESS J,ERABLE B,et al.Electrochemical reduction of CO2 catalysed by Geobacter sulfurreducens grown on polarized stainless steel cathodes[J].Electrochemistry Communications,2013,28:27-30. [74] ZENG A P.Pathway and kinetic analysis of 1,3-propanediol production from glycerol fermentation by Clostridium butyricum[J].Bioprocess Engineering,1996,14(4):169-175. [75] DU C Y,YAN H,ZHANG Y P,et al.Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae[J].Applied Microbiology and Biotechnology,2006,69(5):554-563. [76] RABAEY K,Bioelectrochemical systems:from extracellular electron transfer to biotechnological application[M].London:IWA Publishing,2010. [77] DENNIS P G,HARNISCH F,YEOH Y K,et al.Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system[J].Applied and Environmental Microbiology,2013,79(13):4008-4014. [78] LEE S Y,PARK J H,JANG S H,et al.Fermentative butanol production by Clostridia[J].Biotechnology and Bioengineering,2008,101(2):209-228. [79] LÜTKE-EVERSLOH T,BAHL H.Metabolic engineering of Clostridium acetobutylicum:recent advances to improve butanol production[J].Current Opinion in Biotechnology,2011,22(5):634-647. [80] GALLARDO R,ACEVEDO A,QUINTER J,et al.In silico analysis of Clostridium acetobutylicum ATCC 824 metabolic response to an external electron supply[J].Bioprocess and Biosystems Engineering,2016,39(2):295-305. [81] MCKINLAY J B,VIEILLE C,ZEIKUS J G.Prospects for a bio-based succinate industry[J].Applied Microbiology and Biotechnology,2007,76(4):727-740. [82] 奚永兰,陈可泉,李建,等.琥珀酸发酵过程中固定CO2的研究进展[J].化工进展,2010,29(7):1314-1319. [83] PARK D H,LAIVENIEKS M,GUETTLER M V,et al.Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production[J].Applied and Environmental Microbiology,1999,65(7):2912-2917. |