[1] SIMON J,M LLER H,KOCH R,et al. Thermoplastic and biodegradable polymers of cellulose[J]. Polymer Degradation and Stability,1998,59(1):107-115. [2] DIOTALLEVI F,MULDER B. The cellulose synthase complex:a polymerization driven supramolecular motor[J]. Biophys. J.,2007,92(8):2666-2673. [3] ZHU H,FANG Z,PRESTON C,et al. Transparent paper:fabrications,properties,and device applications[J]. Energ. Environ. Sci.,2014,7(1):269-287. [4] BESSUEILLE L,BULONE V. A survey of cellulose biosynthesis in higher plants[J]. Plant Biotechnol.,2008,25(3):315-322. [5] KAMEL S. Nanotechnology and its applications in lignocellulosic composites,a mini review[J]. Express Polym. Lett.,2007,1(9):546-575. [6] LAVOINE N,DESLOGES I,DUFRESNE A,et al. Microfibrillated cellulose--its barrier properties and applications in cellulosic materials:a review[J]. Carbohydrate Polymers,2012,90(2):735-764. [7] German Version. Nanotechnologies--terminology and definitions for nano-objects--nanoparticle,nanofibre and nanoplate (ISO/TS 27687:2008)[S]. German Version:Vornorm DIN CEN ISO/TS,2008. [8] OSONG S H,NORGREN S,ENGSTRAND P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose,and applications relating to papermaking:a review[J]. Cellulose,2016,23(1):93-123. [9] ABDUL KHALIL H P,DAVOUDPOUR Y,ISLAM M N,et al. Production and modification of nanofibrillated cellulose using various mechanical processes:a review[J]. Carbohydrate Polymer,2014,99:649-665. [10] TAPPI. Proposed new TAPPI standard:Standard terms and their definition for cellulose nanomaterial[M]. TAPPI,2011. [11] ROMAN M,WINTER W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules,2004,5(5):1671-1677. [12] CHEN L,WANG Q,HIRTH K,et al. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis[J]. Cellulose,2015,(3):1753-1762. [13] SYVERUD K,CHINGA-CARRASCO G,TOLEDO J,et al. A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils[J]. Carbohydrate Polymers,2011,84(3):1033-1038. [14] SIRÓ I,PLACKETT D. Microfibrillated cellulose and new nanocomposite materials:a review[J]. Cellulose,2010,17(3):459-494. [15] SASSI J F,CHANZY H. Ultrastructural aspects of the acetylation of cellulose[J]. Cellulose,1995,2(2):111-127. [16] IWAMOTO S,KAI W,ISOGAI T,et al. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils[J]. Polym. Degrad. Stab.,2010,95(8):1394-1398. [17] UETANI K,YANO H. Nanofibrillation of wood pulp using a high-speed blender[J]. Biomacromolecules,2011,12(2):348-353. [18] AMIRALIAN N,ANNAMALAI P K,MEMMOTT P,et al. Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods[J]. Cellulose,2015,22(4):2483-2498. [19] LEITNER J,HINTERSTOISSER B,WASTYN M,et al. Sugar beet cellulose nanofibril-reinforced composites[J]. Cellulose,2007,14(5):419-425. [20] ZIMMERMANN T,BORDEANU N,STRUB E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential[J]. Carbohydrate Polymers,2010,79(4):1086-1093. [21] LIIMATAINEN H,VISANKO M,SIRVI J A,et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation[J]. Biomacromolecules,2012,13(5):1592-1597. [22] NAKAGAITO A N,YANO H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites[J]. Appl. Phys. A,2004,78(4):547-552. [23] LPEZ-RUBIO A,LAGARON J M,ANKERFORS M,et al. Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose[J]. Carbohydrate Polymers,2007,47(3):249-278. [24] HERRICK F W,CASEBIER R L,HAMILTON J K,et al. Microfibrillated cellulose:morphology and accessibility[J]. J. Appl. Polym. Sci.:Appl. Polym. Symp.(United States),1983,37:5039044. [25] TURBAK A F,SNYDER F W,SANDBERG K R. Microfibrillated cellulose,a new cellulose product:properties,uses,and commercial potential[C]//NewYork:J. Appl. Polym. Sci.:Appl. Polym. Symp.(United States),1983-01-01. [26] TURBAK A F,SNYDER F W,SANDBERG K R. Suspensions containing microfibrillated cellulose:US445272[P]. 1984-07-05. [27] DUFRESNE A,DUPEYRE D,VIGNON M R. Cellulose microfibrils from potato tuber cells:processing and characterization of starch–cellulose microfibril composites[J]. J. Appl. Polym. Sci.,2000,76(14):2080-2092. [28] HABIBI Y,MAHROUZ M,VIGNON M R. Microfibrillated cellulose from the peel of prickly pear fruits[J]. Food Chem.,2009,115(2):423-429. [29] SPENCE K L,VENDITTI R A,ROJAS O J,et al. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods[J]. Cellulose,2011,18(4):1097-1111. [30] SPENCE K L,VENDITTI R A,HABIBI Y,et al. The effect of chemical composition on microfibrillar cellulose films from wood pulps:mechanical processing and physical properties[J]. Bioinformation,2010,101(101):5961-5968. [31] WANG B,SAIN M. Dispersion of soybean stock-based nanofiber in a plastic matrix[J]. Polym. Int.,2007,56(4):538-546. [32] IWAMOTO S,NAKAGAITO A N,YANO H,et al. Optically transparent composites reinforced with plant fiber-based nanofibers[J]. Appl. Phys. A,2005,81(6):1109-1112. [33] STELTE W,SANADI A R. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps[J]. Indengchemres,2009,48(24):11211-11219. [34] KARANDE V S,BHARIMALLA A K,HADGE G B,et al. Nanofibrillation of cotton fibers by disc refiner and its characterization[J]. Fibers & Polymers,2011,12(3):399-404. [35] KUMAR A,SINGH S P,SINGH A K. Preparation and characterization of cellulose nanofibers from bleached pulp using a mechanical treatment method[J]. Tappi Journal,2014,13(5):25-31. [36] LEE S Y,CHUN S J,KANG I A,et al. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films[J]. Journal of Industrial & Engineering Chemistry,2009,15(1):50-55. [37] CHRISTIAN A,SUSANNA A,PETER J,et al. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water[J]. Langmuir,2009,25(13):7675-7685. [38] FERRER A,FILPPONEN I,RODR GUEZ A,et al. Valorization of residual empty palm fruit bunch fibers (EPFBF)by microfluidization:production of nanofibrillated cellulose and EPFBF nanopaper[J]. Bioresour Technol.,2012,125C(12):249-255. [39] TANIGUCHI T,OKAMURA K. New films produced from microfibrillated natural fibres[J]. Polym. Int.,1998,47(3):291-294. [40] WANG Q Q,ZHU J Y,GLEISNER R,et al. Morphological development of cellulose nanofibrils (CNF) of a bleached eucalyptus pulp by mechanical fibrillation[J]. Cellulose,2012,19(5):1631-1643. [41] HASSAN M L,MATHEW A P,HASSAN E A,et al. Nanofibers from bagasse and rice straw:process optimization and properties[J]. Wood. Sci. Technol.,2012,46(1-3):193-205. [42] IWAMOTO S,NAKAGAITO A N,YANO H. Nano-fibrillation of pulp fibres for the processing of transparent nanocomposites[J]. Appl. Phys. A:Mater. Sci. Process,2007,89(2):461-466. [43] NAIR S S,ZHU J Y,DENG Y,et al. Characterization of cellulose nanofibrillation by micro grinding[J]. Mol. Ecol. Notes,2006,6(1):90-92. [44] HENRIKSSON M,ISAKSSON B P. Cellulose nanopaper structures of high toughness[J]. Biomacromolecules,2008,9(6):1579-1585. [45] MATSUDA Y,HIROSE M,UENO K. Super microfibrillated cellulose,process for producing the same,and coated paper and tinted paper using the same:US6214163[P]. 2001-04-10. [46] DUFRESNE A,CAVAILL J Y,HELBERT W. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part Ⅱ:Effect of processing and modeling[J]. Polym. Compos.,1997,18(2):198-210. [47] ALEMDAR A,SAIN M. Biocomposites from wheat straw nanofibers:morphology,thermal and mechanical properties[J]. Composites Science & Technology,2008,68(2):557-565. [48] CHENG Q,WANG S,RIALS T G. Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication[J]. Composites Part A:Applied Science & Manufacturing,2009,40(2):218-224. [49] 冯若. 声化学基础研究中的声学问题[J]. 物理学进展,1996,16(3):402-412. FENG Ruo. the Acoustic problems in in fundamental study on sonochemistry[J]. Progress in Physics,1996,16(3):402-412. [50] IWASAKI T,LINDBERG B,MEIER H. The effect of ultrasonic treatment on individual wood fibers[J]. Svensk Papperstidning,1962,65(20):795-816. [51] WANG S,CHENG Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication,part 1:process optimization[J]. J. Appl. Polym. Sci.,2009,113(2):1270-1275. [52] CHEN W,YU H,LIU Y,et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process[J]. Cellulose,2011,18(2):433-442. [53] HUANG Z M,ZHANG Y Z,KOTAKI M,et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science & Technology,2003,63(15):2223-2253. [54] AULIN C,GÄLLSTEDT M,LINDSTRÖM T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings[J]. Cellulose,2010,17(3):559-574. [55] ANKERFORS M. Microfibrillated cellulose:energy-efficient preparation techniques and key properties[R]. Stockholm:KTH Royal Institute of Technology,2012. [56] ISOGAI A,TSUGUYUKI S,HAYAKA F. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale,2010,3(1):71-85. [57] ERIKSEN. The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper[J]. Nord. Pulp. Pap. Res. J.,2008,23(3):299-304. [58] SZCZĘSNA-ANTCZAK M,KAZIMIERCZAK J,ANTCZAK T. Nanotechnology--methods of manufacturing cellulose nanofibres[J]. Fibres and Texitiles in Eastern Europe,2012,20(2):8-12. [59] FUKUZUMI H,SAITO T,OKITA Y,et al. Thermal stabilization of TEMPO-oxidized cellulose[J]. Polym. Degrad. Stab.,2010,95(9):1502-1508. [60] MILLER Jack. Nanocellulose:technology applications,and markets[C]//Vancouver,BC:TAPPI International Conference on Nanotechnology for Renewable Materials. 2014. [61] HENRIKSSON M,HENRIKSSON G,BERGLUND L A,et al. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers[J]. Eur. Polym. J.,2007,43(8):3434-3441. [62] MISSOUM K,BELGACEM M N,BRAS J. Nanofibrillated cellulose surface modification:a review[J]. Materials,2013,6(5):1745-1766. [63] PÄÄKKÖ M,VAPAAVUORI J,SILVENNOINEN R,et al. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities[J]. Soft Matter,2008,4(12):2492-2499. [64] HOEGER I C,NAIR S S,RAGAUSKAS A J,et al. Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification[J]. Cellulose,2013,20(2):807-818. [65] Innventia. Nanocellulose for the first time on a large scale[R]. Sweden:Innventia. 2011. [66] QVINTUS Pia. Cellulose nanofibrils:overcoming challenges on the development of nanocellulose-based products[C]//Proceedings of the TAPPI International Conference on Nanotechnology for Renewable Materials,Atlanta,GA,2015. [67] SAIN M M,BHATNAGAR A. Manufacturing process of cellulose nanofibers from renewable feed stocks:US20080146701A1[P]. 2008-06-19. [68] SAIN M M,BHATNAGAR A. Manufacturing of nano-fibrils from natural fibres,agro based fibres and root fibres:CA2437616A1[P]. 2005-02-04. [69] HAN J Q,ZHOU C J,WU Y Q,et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying:effect of suspension concentration,particle size,crystal structure,and surface charge[J]. Biomacromolecules,2013,14(5):1529-1540. [70] WALECKA J A. An investigation of low degree of substitution carboxymethylcelluloses[J]. Georgia Institute of Technology,1956, [71] WÅGBERG L,DECHER G,NORGREN M,et al. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes[J]. Langmuir the Acs Journal of Surfaces & Colloids,2008,24(3):784-795. [72] EYHOLZER C,BORDEANU N,LOPEZ-SUEVOS F,et al. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form[J]. Cellulose,2010,17(1):19-30. [73] TAIPALE T,ÖSTERBERG M,NYK NEN A,et al. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength[J]. Cellulose,2010,17(17):1005-1020. [74] SIRÓ I,PLACKETT D,HEDENQVIST M,et al. Highly transparent films from carboxymethylated microfibrillated cellulose:the effect of multiple homogenization steps on key properties[J]. J. Appl. Polym. Sci.,2011,119(5):2652-2660. [75] SEMMELHACK M F,CHOU C S,CORTES D A. Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones[J]. Jamchemsoc,1983,105(13):4492-4494. [76] SEMMELHACK M F,SCHMID C R,CORTES D A,et al. Oxidation of alcohols to aldehydes with oxygen and cupric ion,mediated by nitrosonium ion[J]. Jamchemsoc,1984,106(11):3374-3376. [77] ANELLI P L,BIFFI C,MONTANARI F,et al. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions[J]. J. Org. Chem.,1987,52(12):2559-2562 [78] DE NOOY A E J,BESEMER A C,BEKKUM H V. Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanism[J]. Tetrahedron,1995,51(29):8023-8032. [79] ISOGAI A,KATO Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation[J]. Cellulose,1998,5(3):153-164. [80] PÄÄKKÖNEN T,DIMIC-MISIC K,ORELMA H,et al. Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel[J]. Cellulose,2015,23(1):1-17. [81] MAO L,LAW K,CLAUDE D,et al. Effects of carboxyl content on the characteristics of TMP long fibers[J]. Indengchemres,2008,47(11):3809-3812. [82] TSUGUYUKI S,SATOSHI K,YOSHIHARU N,et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491. [83] YOSHIDA Y,YANAGISAWA M,ISOGAI A,et al. Preparation of polymer brush-type cellulose β-ketoesters using LiCl/1,3-dimethyl-2-imidazolidinone as a solvent[J]. Polymer,2005,46(8):2548-2557. [84] TSUGUYUKI S,MASAYUKI H,NAOYUKI T,et al. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions[J]. Biomacromolecules,2009,10(7):1992-1996. [85] TSUGUYUKI S,YOSHIHARU N,JEAN-LUC P,et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose[J]. Biomacromolecules,2006,7(6):1687-1691. [86] HIROTA M,TAMURA N,SAITO T,et al. Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions[J]. Carbohydrate Polymers,2009,78(2):330-335. [87] RINAUDO M. Periodate Oxidation of methylcellulose:characterization and properties of oxidized derivatives[J]. Polymers:Basel,2010,2(4):505-521. [88] KIM U J,KUGA S,WADA M,et al. Periodate oxidation of crystalline cellulose[J]. Biomacromolecules,2000,1(3):488-492. [89] LIIMATAINEN H,VISANKO M,SIRVI J,et al. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment[J]. Cellulose,2013,20(2):741-749. [90] ZIMMERMANN M V,BORSOI C,LAVORATTI A,et al. Drying techniques applied to cellulose nanofibers[J]. J. Reinf. Plast. Compos.,2016, [91] BECK S,BOUCHARD J,BERRY R. Dispersibility in water of dried nanocrystalline cellulose[J]. Biomacromolecules,2012,13(5):1486-1494. [92] PENG Y,GARDNER D J,HAN Y,et al. Influence of drying method on the material properties of nanocellulose Ⅰ:thermostability and crystallinity[J]. Cellulose,2013,20(5):2379-2392. [93] PENG Y,GARDNER D J,HAN Y. Drying cellulose nanofibrils:in search of a suitable method[J]. Cellulose,2012,19(19):91-102. |