[1] LUND H, WEMER S, WILTSHIRE R, et al. 4th Generation District Heating(4GDH): Integrating smart thermal grids into future sustainable energy systems[J]. Energy, 2014, 68: 1-11.[2] DENG S, WANG R Z, DAI Y J. How to evaluate performance of net zero energy building - A literature research[J]. Energy, 2014, 71: 1-16.[3] 王智平, 陈丹丹, 王克振, 等. 太阳能储热水箱温度分层的研究现状及发展趋势[J]. 材料导报, 2013(15): 70-73.[4] 陈丹丹. 分层储热水箱设计及其对太阳能集热器效率的影响研究[D]. 兰州: 兰州理工大学, 2014.[5] 王登甲, 刘艳峰. 太阳能热水采暖蓄热水箱温度分层分析[J]. 建筑热能通风空调, 2010, 29(1): 16-19.[6] BROWN N M, LAI F C. Enhanced thermal stratification in a liquid storage tank with a porous manifold[J]. Solar Energy, 2011, 85(7): 1409-1417.[7] ALTUNTOP N, ARSLAN M, OZCEYHAN V, et al. Effect of obstacles on thermal stratification in hot water storage tanks[J]. Applied Thermal Engineering, 2005, 25(14): 2285-2298.[8] ZURIGAT Y H, GHAJAR A J, MORETTI P M. Stratified thermal storage tank inlet mixing characterization[J]. Applied Energy, 1988, 30(2): 99-111.[9] 韩延民, 王如竹, 代彦军, 等. 卧式热分区太阳能水箱内的贮热性能分析及试验研究[J]. 太阳能学报, 2008(3): 277-282.[10] SMITH H, BELL S, MACBETH, et al. CFD analysis of a density-dependent valve within a hot water system[C]//ECCOMAS CFD Lisbon, Portugal, 2010: 14-17.[11] DEVORE N, YIP H, RHEE J. Domestic hot water storage tank: design and analysis for improving thermal stratification[J]. Journal of Solar Energy Engineering, 2013, 135(4): 040905.[12] BOUHDJAR A, HARHAD A. Numerical analysis of transient mixed convection flow in storage tank: influence of fluid properties and aspect ratios on stratification[J]. Renewable Energy, 2002, 25(4): 555-567.[13] EAMES P C, NORTON B. The effect of tank geometry on thermally stratified sensible heat storage subject to low Reynolds number flows[J]. International Journal of Heat and Mass Transfer, 1998, 41(14): 2131-2142.[14] FAN J, FURBO S. Thermal stratification in a hot water tank established by heat loss from the tank[J]. Solar Energy, 2012, 86(11): 3460-3469.[15] FAN J, FURBO S. Buoyancy driven flow in a hot water tank due to standby heat loss[J]. Solar Energy, 2012, 86(11): 3438-3449.[16] NJOKU H O, EKECHUKWU O V, ONYEGEGBU S O. Analysis of stratified thermal storage systems: an overview[J]. Heat and Mass Transfer, 2014, 50(7): 1017-1030.[17] HAN Y M, WANG R Z, DAI Y J. Thermal stratification within the water tank[J]. Renewable and Sustainable Energy Reviews, 2009, 13(5): 1014-1026.[18] DICINSON R M, CRUICKSHANK C A, HARRISON S J. Thermal behaviour of a modular storage system when subjected to variable charge and discharge sequences[J]. Solar Energy, 2014, 104: 29-41.[19] DELALEUX F R, DOMINGUEZ A. Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity[J]. Applied Thermal Engineering, 2012, 33: 92-99.[20] BORINAGE R, PASCUALl P, CASTRO D J. Study of different grouting materials used in vertical geothermal closed-loop heat exchangers[J]. Applied Thermal Engineering, 2013, 50(1): 159-167.[21] RATHOD M K, BANERJE E J. Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins[J]. Applied Thermal Engineering, 2015, 75: 1084-1092.[22] CASTELL A, SOLE C, MEDRANO M, et al. Natural convection heat transfer coefficients in phase change material (PCM) modules with external vertical fins[J]. Applied Thermal Engineering, 2008, 28(13): 1676-1686.[23] 凌空, 封永亮, 陶文铨. 带环状翅片管式相变储热器的数值模拟[J].工程热物理学报, 2012, 33(8): 37-45.[24] LANGURI E M, AIGBOTSUA C O, ALVARADO J L. Latent thermal energy storage system using phase change material in corrugated enclosures[J]. Applied Thermal Engineering, 2013, 50(1): 1008-1014.[25] VELRAJ R, SEENIRAJ R V, HAFNER B, et al. Heat transfer enhancement in a latent heat storage system[J]. Solar Energy, 1999, 65(3): 171-180.[26] WANG W L, GUO S P, Li H, et al. Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)[J]. Applied Energy, 2014, 119(12): 181-189.[27] GUO S P, LI H L, ZHAO J, LI X, et al. Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage[J]. Applied Energy, 2013, 112: 1416-1423.[28] OYA T, NOMURA T, OKINAKA N, et al. Phase change composite based on porous nickel and erythritol[J]. Applied Thermal Engineering, 2012, 40: 373-377.[29] OYA T, NOMURA T, OKINAKA N, et al. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles[J]. Applied Thermal Engineering, 2013, 61(2): 825-828.[30] 唐小梅, 于航. 使用泡沫铜增强相变材料换热性能的实验研究[J]. 建筑节能, 2012(3): 50-54.[31] WANG J F, XIE H, GUO Z, et al. Improved thermal properties of paraffin wax by the addition of TiO2 nanoparticles[J]. Applied Thermal Engineering, 2014, 73(2): 1541-1547.[32] OMARI K, KOUSKSOU T. Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices[J]. Applied Thermal Engineering, 2011, 31(14): 3022-3035.[33] WEI J F, KAWAGUCHI Y, HIRANO S, et al. Study on a PCM heat storage system for rapid heat supply[J]. Applied Thermal Engineering, 2005, 25(17): 2903-2920.[34] DARKWA J. Thermal simulation of composite high conductivity laminated microencapsulated phase change material (MEPCM) board[J]. Applied Energy, 2012, 95: 246-252.[35] 张艳来, 饶中浩, 李复活, 等. 相变材料微胶囊流体相变过程对储热蓄热影响[J]. 工程热物理学报, 2014, 35(1): 140-144.[36] WANG J F, OUYANG Y, CHEN G. Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials[J]. International Journal of Energy Research, 2001, 25(5): 439-447.[37] FANG M, CHEN G. Effects of different multiple PCMs on the performance of a latent thermal energy storage system[J]. Applied Thermal Engineering, 2007, 27(5): 994-1000.[38] 胡芃, 卢大杰, 赵盼盼, 等. 组合式相变材料最佳相变温度的热力学分析[J]. 化工学报, 2013, 64(7): 2322-2327.[39] YU N, WANG R Z, WANG L W. Sorption thermal storage for solar energy[J]. Progress in Energy and Combustion Science, 2013, 39(5): 489-514.[40] KIPLAGAT J K, WANG R Z, LI T X, et al. Enhancement of heat and mass transfer in solid gas sorption systems[J]. International Journal of Air-Conditioning and Refrigeration, 2012, 20(1): 113001. DOI: 10. 1142/ S2010132511300011.[41] BALES C, GANTENBEIN P, JAENIG D, et al. Laboratory tests of chemical reactions and prototype sorption storage units[C]//A Report of IEA Solar Heating and Cooling programme-Task, 2008: 32.[42] QUINNELL J A, DAVIDSON J H. Heat and mass transfer during heating of a hybrid absorption/sensible storage tank[J]. Solar Energy, 2014, 104: 19-28.[43] MICHEL B, MAZET N, MAURAN S, et al. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high density reactive bed[J]. Energy, 2012, 47(1): 553-563.[44] NAKASON K, ANAI M, SASAKI Y, et al. Improvement of heat transfer characteristic in a solid-gas thermochemical reactor[C]//Proc. 10th APCCHE, Japan, 2004.[45] 沈丹, 赵长颖. 镁/氢化镁储热系统放热过程优化分析[J]. 储能科学与技术, 2014, 3(1): 36-41.[46] WANG L W, WANG R Z, LU Z S, et al. Studies on split heat pipe type adsorption ice-making test unit for fishing boats: choice of heat pipe medium and experiments under unsteady heating sources[J]. Energy Conversion and Management, 2006, 47(15): 2081-2091. |