| [1] |
ALOTAIBI Faisal M, Sergio GONZÁLEZ-CORTÉS, ALOTIBI Mohammed F, et al. Enhancing the production of light olefins from heavy crude oils: Turning challenges into opportunities[J]. Catalysis Today, 2018, 317: 86-98.
|
| [2] |
ALOTIBI Mohammed F, ALSHAMMARI Basheer A, ALOTAIBI Mohammad Hayal, et al. ZSM-5 zeolite based additive in FCC process: A review on modifications for improving propylene production[J]. Catalysis Surveys from Asia, 2020, 24(1): 1-10.
|
| [3] |
CORMA A, CORRESA E, MATHIEU Y, et al. Crude oil to chemicals: Light olefins from crude oil[J]. Catalysis Science & Technology, 2017, 7(1): 12-46.
|
| [4] |
VOGT E T C, WECKHUYSEN B M. Fluid catalytic cracking: Recent developments on the grand old lady of zeolite catalysis[J]. Chemical Society Reviews, 2015, 44(20): 7342-7370.
|
| [5] |
CORMA Avelino, MENGUAL Jesús, MIGUEL Pablo J. Stabilization of ZSM-5 zeolite catalysts for steam catalytic cracking of naphtha for production of propene and ethene[J]. Applied Catalysis A: General, 2012, 421: 121-134.
|
| [6] |
GUSEV Andrey A, PSARRAS Antonios C, TRIANTAFYLLIDIS Konstantinos S, et al. Effect of steam deactivation severity of ZSM-5 additives on LPG olefins production in the FCC process[J]. Molecules, 2017, 22(10): 1784.
|
| [7] |
SONG Zhaoxia, TAKAHASHI Atsushi, NAKAMURA Isao, et al. Phosphorus-modified ZSM-5 for conversion of ethanol to propylene[J]. Applied Catalysis A: General, 2010, 384(1/2): 201-205.
|
| [8] |
YAMAGUCHI Aritomo, JIN Dingfeng, IKEDA Takuji, et al. P-ZSM-5 pretreated by high-temperature calcination as durable catalysts for steam cracking of n-hexane[J]. Catalysis Letters, 2014, 144(1): 44-49.
|
| [9] |
RAHIMI N, MORADI D, SHEIBAK M, et al. The influence of modification methods on the catalytic cracking of LPG over lanthanum and phosphorus modified HZSM-5 catalysts[J]. Microporous and Mesoporous Materials, 2016, 234: 215-223.
|
| [10] |
KAEDING W W, CHU C, YOUNG L B, et al. Selective alkylation of toluene with methanol to produce para-xylene[J]. Journal of Catalysis, 1981, 67(1): 159-174.
|
| [11] |
BLASCO T, CORMA A, MARTÍNEZ-TRIGUERO J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. Journal of Catalysis, 2006, 237(2): 267-277.
|
| [12] |
VAN DER BIJ Hendrik E, ARAMBURO Luis R, ARSTAD Bjørnar, et al. Phosphatation of zeolite H-ZSM-5: A combined microscopy and spectroscopy study[J]. ChemPhysChem, 2014, 15(2): 283-292.
|
| [13] |
HAN Lei, OUYANG Ying, XING Enhui, et al. Enhancing hydrothermal stability of framework Al in ZSM-5: From the view on the transformation between P and Al species by solid-state NMR spectroscopy[J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3052-3060.
|
| [14] |
韩蕾, 欧阳颖, 罗一斌, 等. 分子筛孔结构对轻烃催化裂解性能的影响[J]. 石油学报(石油加工), 2018, 34(6): 1057-1066.
|
|
HAN Lei, OUYANG Ying, LUO Yibin, et al. Effects of pore structure on the catalytic performance of ZSM-5 zeolite in light hydrocarbons cracking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(6): 1057-1066.
|
| [15] |
李君华, 王丽娜, 张丹, 等. 酸处理ZSM-5分子筛对甲醇芳构化反应的影响[J]. 现代化工, 2020, 40(3): 107-111.
|
|
LI Junhua, WANG Lina, ZHANG Dan, et al. Effect of acid treatment of ZSM-5 molecular sieve on methanol to aromatics[J]. Modern Chemical Industry, 2020, 40(3): 107-111.
|
| [16] |
孙泽平, 武建兵, 李鹏, 等. 柠檬酸处理对ZSM-5分子筛甲缩醛气相羰基化性能的影响[J]. 分子催化, 2021, 35(1): 22-30.
|
|
SUN Zeping, WU Jianbing, LI Peng, et al. Effect of citric acid modification of ZSM-5 zeolite on vapor-phase dimethoxymethane carbonylation[J]. Journal of Molecular Catalysis (China), 2021, 35(1): 22-30.
|
| [17] |
徐如人. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2004: 140-141.
|
|
XU Ruren. Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2004: 140-141.
|
| [18] |
ZHOU Jian, TENG Jiawei, REN Liping, et al. Full-crystalline hierarchical monolithic ZSM-5 zeolites as superiorly active and long-lived practical catalysts in methanol-to-hydrocarbons reaction[J]. Journal of Catalysis, 2016, 340: 166-176.
|
| [19] |
RAMESH Kanaparthi, Chang JIE, HAN Yifan, et al. Synthesis, characterization, and catalytic activity of phosphorus modified H-ZSM-5 catalysts in selective ethanol dehydration[J]. Industrial & Engineering Chemistry Research, 2010, 49(9): 4080-4090.
|
| [20] |
GAO Xionghou, TANG Zhicheng, LU Gongxuan, et al. Butene catalytic cracking to ethylene and propylene on mesoporous ZSM-5 by desilication[J]. Solid State Sciences, 2010, 12(7): 1278-1282.
|
| [21] |
MOCHIZUKI Hiroshi, YOKOI Toshiyuki, IMAI Hiroyuki, et al. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking[J]. Applied Catalysis A: General, 2012, 449: 188-197.
|
| [22] |
LIU Jia, LI Yuming, CHEN Zhentao, et al. Hierarchical ZSM-5 zeolites with tunable sizes of building blocks for efficient catalytic cracking of i-butane[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10327-10335.
|
| [23] |
LEE Joongwon, HONG Ung Gi, HWANG Sunhwan, et al. Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5: Effect of lanthanum content[J]. Fuel Processing Technology, 2013, 109: 189-195.
|
| [24] |
DING Jian, WANG Meng, PENG Luming, et al. Combined desilication and phosphorus modification for high-silica ZSM-5 zeolite with related study of hydrocarbon cracking performance[J]. Applied Catalysis A: General, 2015, 503: 147-155.
|
| [25] |
CAEIRO G, MAGNOUX P, LOPES J M, et al. Stabilization effect of phosphorus on steamed H-MFI zeolites[J]. Applied Catalysis A: General, 2006, 314(2): 160-171.
|
| [26] |
许顺年, 王刚, 刘美佳, 等. P-Fe改性ZSM-5分子筛的酸性质对正戊烷催化裂解性能的影响[J]. 石油学报(石油加工), 2023, 39(3): 487-496.
|
|
XU Shunnian, WANG Gang, LIU Meijia, et al. Effect of acid properties of P-Fe modified ZSM-5 zeolite on the catalytic pyrolysis performance of n-pentane[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(3): 487-496.
|
| [27] |
GAO Xionghou, TANG Zhicheng, JI Dong, et al. Modification of ZSM-5 zeolite for maximizing propylene in fluid catalytic cracking reaction[J]. Catalysis Communications, 2009, 10(14): 1787-1790.
|
| [28] |
KUBO Kohei, IIDA Hajime, NAMBA Seitaro, et al. Effect of steaming on acidity and catalytic performance of H-ZSM-5 and P/H-ZSM-5 as naphtha to olefin catalysts[J]. Microporous and Mesoporous Materials, 2014, 188: 23-29.
|
| [29] |
宋守强, 李明罡, 李黎声, 等. 磷改性ZSM-5分子筛的水热稳定性[J]. 石油学报(石油加工), 2014, 30(2): 194-203.
|
|
SONG Shouqiang, LI Minggang, LI Lisheng, et al. Hydrothermal stability of P-modified ZSM-5 molecular sieves[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(2): 194-203.
|
| [30] |
Jian LYU, HUA Zile, GE Tongguang, et al. Phosphorus modified hierarchically structured ZSM-5 zeolites for enhanced hydrothermal stability and intensified propylene production from 1-butene cracking[J]. Microporous and Mesoporous Materials, 2017, 247: 31-37.
|
| [31] |
NI Ne, GAO Xiuzhi, XING Enhui, et al. Phosphorus promotion on hydrothermal stability of ZSM-5 by P precursors with different molecular sizes[J]. Microporous and Mesoporous Materials, 2023, 360: 112706.
|
| [32] |
BAO Shuhao, GUO Mengting, LIU Bo, et al. Effect of P sources on the phosphorus modified MCM-22 for n-hexane catalytic cracking[J]. Reaction Kinetics, Mechanisms and Catalysis, 2021, 132(1): 431-447.
|