化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5703-5716.DOI: 10.16085/j.issn.1000-6613.2024-1455

• 能源加工与技术 • 上一篇    

铁基钙钛矿载氧体化学链制合成气热力学性能分析与实验

张善超1(), 张德亮2, 王露2, 梁豪1, 杨倩1, 杨冠杰1, 苏伟1, 马晓迅1, 朱燕燕1()   

  1. 1.西北大学化工学院,国家碳氢资源清洁利用国际科技合作基地,陕北能源先进化工利用技术教育部工程研究中心,陕西省洁净煤转化工程技术研究中心,陕北能源化工产业发展协同创新中心,陕西 西安 710127
    2.陕西煤业化工集团神木能源发展有限公司,陕西 榆林 719300
  • 收稿日期:2024-09-05 修回日期:2024-12-26 出版日期:2025-10-25 发布日期:2025-11-10
  • 通讯作者: 朱燕燕
  • 作者简介:张善超(2001—),男,硕士研究生,研究方向为能源化工。E-mail:19861215961@163.com
  • 基金资助:
    国家自然科学基金(22378331);榆林学院-中国科学院洁净能源创新研究院联合基金(2021012)

Thermodynamic analysis and experimental study on the iron-based perovskite oxygen carrier for syngas production via chemical looping

ZHANG Shanchao1(), ZHANG Deliang2, WANG Lu2, LIANG Hao1, YANG Qian1, YANG Guanjie1, SU Wei1, MA Xiaoxun1, ZHU Yanyan1()   

  1. 1.School of Chemical Engineering, Northwest University, International Scientific and Technological Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Shaanxi Research Center of Engineering Technology for Clean Coal Conversion, Collaborative Innovation Center for Development of Energy and Chemical industry in Northern Shaanxi, Xi’an 710127, Shaanxi, China
    2.Shenmu Energy Developments Company Limited, Yulin 719300, Shaanxi, China
  • Received:2024-09-05 Revised:2024-12-26 Online:2025-10-25 Published:2025-11-10
  • Contact: ZHU Yanyan

摘要:

甲烷化学链干重整(CLDR)技术借助载氧体的循环将传统甲烷干重整反应进行时空解耦,可直接获得适合费托合成的合成气(H2/CO≈2),并实现温室气体CO2至CO的定向转化,其中,性能优异的载氧体(OC)是CLDR技术成功运行的关键。铁基钙钛矿(ABO3)具有优良的结构稳定性和合成气选择性,在化学链重整过程中备受关注,但它存在CH4活性低和循环稳定性差等不足,通过A和B位掺杂可调节载氧体的表面催化活性和晶格氧移动性,进而提高合成气产量和循环稳定性。本工作首先利用热力学软件研究了AFe1-x B x O3铁基钙钛矿载氧体A(Y、La、Pr、Sm)位和B位(Mn、Sn、Zr)金属取代对CLDR制合成气潜力的影响,发现A=La、B=Zr时载氧体性能最佳。之后,采用溶胶-凝胶法制备了LaFe0.93Zr0.07O3载氧体,发现Zr掺杂的新鲜LaFe0.93Zr0.07O3载氧体的甲烷转化率、合成气收率分别由LaFeO3的62.06%和1.38mmol/g提高至94.57%和1.97mmol/g,且在30次氧化还原循环反应过程中保持稳定(93.90%~96.29%和1.96~2.01mmol/g),在CO2氧化阶段也能够稳定高效地将更多CO2分子定向转化为CO(0.69mmol/g vs. 1.21mmol/g),无失活现象,这主要归因于Zr掺杂降低了载氧体的晶粒尺寸,造成了FeO6八面体畸变和更多的氧空位,增强了晶格氧活性和抗烧结性。本工作结合理论与实验的研究,能够为载氧体的优化设计提供理论和实验依据。

关键词: 化学链干重整, 钙钛矿, 热力学模拟, 载氧体, 甲烷

Abstract:

The chemical looping dry reforming (CLDR ) of methane is an emerging technology for the generation of Fischer-Tropsch ready syngas (H2/CO≈2) and CO2 utilization via the circulation of oxygen carriers to temporally or spatially decouple the traditional dry reforming. The successful application of CLDR is strongly dependent upon the oxygen carrier (OC) with excellent performance. Iron-based perovskite (ABO3) has attracted much attention in the chemical looping reforming process due to its good structural stability and syngas selectivity. Unfortunately, it suffers from low CH4 activity and poor cyclic stability. The surface catalytic activity and lattice oxygen mobility of OC can be adjusted by doping metal ions at A and B sites, thereby improving the syngas yield and cyclic stability. In this work, the effects of metal substitution at A (Y, La, Pr, Sm ) and B ( Mn, Sn, Zr) sites of AFe1-x B x O3 iron-based perovskite OCs on the potential of CLDR for syngas production were firstly studied by thermodynamic software. It was found that the AFe1-x B x O3 OC with A = La and B = Zr had the best performance. Then, LaFe0.93Zr0.07O3 OC was prepared by sol-gel method. Compared to LaFeO3 (XCH4=62.06%, Ysyn=1.38mmol/g), Zr-doped fresh LaFe0.93Zr0.07O3 OC exhibited much higher methane conversion (94.57 %) and syngas yield (1.97mmol/g), and still remained at high level during 30 redox cycles (93.90%—96.29% and 1.96—2.01mmol/g). During the CO2 oxidation stage, more CO2 molecules (0.86mmol/g vs. 1.21mmol/g) could also be stably and efficiently converted into CO without deactivation. The excellent performance of Zr-doped perovskite OC was mainly due to the fact that Zr doping reduced the grain size, caused FeO6 octahedron distortion and more oxygen vacancies, and enhanced lattice oxygen activity and sintering resistance. This work combining theoretical and experimental research could provide theoretical and experimental insight for the optimal design of oxygen carriers.

Key words: chemical looping dry reforming, perovskite, thermodynamic simulation, oxygen carrier, methane

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn